## **SENIOR SECONDARY IMPROVEMENT PROGRAMME 2013**



# **GRADE 12**

# **PHYSICAL SCIENCES**

# LEARNER HOMEWORK SOLUTIONS





The SSIP is supported by

(c) Gauteng Department of Education, 2013

## TABLE OF CONTENTS

## LEARNER HOMEWORK SOLUTIONS

| SESSION | TOPIC                                                                                           | PAGE |
|---------|-------------------------------------------------------------------------------------------------|------|
| 8       | Chemical Equilibrium                                                                            | 3    |
| 9       | Electrolytic and galvanic cells                                                                 | 5    |
| 10      | Consolidation exercises – mechanics and matter, and materials                                   | 6    |
| 11      | Consolidation exercises – sound, Doppler effect and light                                       | 7    |
| 12      | Consolidation exercises – organic molecules and their reactions                                 | 8    |
| 13      | Consolidation exercises – rates, chemical equilibrium and electrochemistry                      | 9    |
| 14      | <ol> <li>Electrostatics - Grade 11 revision</li> <li>Electricity – Grade 11 revision</li> </ol> | 10   |
| 15      | Electrodynamics – motors and generators and alternating current.                                | 12   |



PHYSICAL SCIENCES GRADE 12 SESSION 8 (LEARNER HOMEWORK SOLUTIONS)

### HOMEWORK SOLUTIONS : SESSION 8 TOPIC: CHEMICAL EQUILIBRIUM

#### **QUESTION 1**

1.1 The forward reaction is exothermic. ✓Thus, lowering the temperature favours the forward, exothermic reaction and the ammonia will now have a higher yield. ✓ However, the rate of reaction will be lowered and this will lead to the ammonia production being unprofitable. ✓ (3)

| 1 | .2. | 1 |
|---|-----|---|
|   |     |   |

|                                                         | NH <sub>3</sub> | O <sub>2</sub> | NO    | H <sub>2</sub> O |
|---------------------------------------------------------|-----------------|----------------|-------|------------------|
| Initial<br>concentration<br>(mol·dm <sup>-3</sup> )     | 1               | 1              | 0     | 0                |
| Change in<br>concentration<br>(mol·dm <sup>-3</sup> )   | 0,25            | 0,3125         | 0,25  | 0,375            |
| Equilibrium<br>concentration<br>(mol·dm <sup>-3</sup> ) | 0,75√           | 0,6875√        | 0,25√ | 0,375√           |

$$K_{c} = \frac{[NO]^{4}[H_{2}O]^{6}}{[NH_{3}]^{4}[O_{2}]^{5}} \checkmark$$
$$= \frac{(0.25)^{4}(0.375)^{6}}{(0.75)^{4}(0.6875)^{5}} \checkmark$$

 $= 2,2 \times 10^{-4} \quad \checkmark \checkmark \tag{9}$ 

1.2.2 Low. ✓ The small equilibrium constant value indicates that the equilibrium lies towards the reactants side ✓ and that there are more reactant molecules in the reaction mixture at equilibrium, thus NO will have a low yield. ✓ (3)

[15]



#### GAUTENG DEPARTMENT OF EDUCATION

#### SENIOR SECONDARY INTERVENTION PROGRAMME

PHYSICAL SCIENCES GRADE 12 SESSION 8 (LEARNER HOMEWORK SOLUTIONS)

#### **QUESTION 2**

|                                                                | N <sub>2</sub> | O <sub>2</sub> | NO   |
|----------------------------------------------------------------|----------------|----------------|------|
| Initial number of mole (mol)                                   | 7              | 2              | 0    |
| Number of moles<br>used/formed (mol)                           | 0,2            | 0,2            | 0,4  |
| Number of moles at equilibrium (mol)                           | 6,8            | 1,8            | 0,4  |
| Equilbrium<br>concentration<br>(mol·dm <sup>-3</sup> ) c = n/V | 3,4√           | 0,9√           | 0,2√ |

 $K_{c} = \frac{[NO]^{2}}{[N_{2}][O_{2}]} \checkmark$  $= (0, 2)^{2}$ 

= 0,013 🗸

[6]



#### PHYSICAL SCIENCES GRADE 12 SESSION 9 (LEARNER HOMEWORK SOLUTIONS)

## HOMEWORK SOLUTIONS: SESSION 9 TOPIC: ELECTROLYTIC AND GALVANIC CELLS

#### **QUESTION 1**

| 1.1.1 | $Fe \rightarrow Fe^{2+} + 2e^{-} \sqrt{\sqrt{1-1}}$                                                                                      | (2)  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.1.2 | Oxygen √                                                                                                                                 | (1)  |
| 1.1.3 | $E^{\theta}_{cell} = E^{\theta}_{cathode} - E^{\theta}_{anode} $<br>= 0,4 \sqrt{-(-0,44)}<br>}<br>$E^{\theta}_{cell} = 0.84 \text{ V}  $ |      |
|       | Because the emf is positive, the reaction is spontaneous. $$                                                                             | (5)  |
| 1 1 1 |                                                                                                                                          | (5)  |
| 1.1.1 | Mg is a stronger reducing agent $\sqrt{than}$ Fe and will be oxidised $\sqrt{2}$                                                         | (2)  |
|       | Or Mg loses electrons more easily than Fe and becomes oxidised.                                                                          |      |
|       | <b>Or</b> Fe is a weaker reducing agent than Mg and will not be oxidised.                                                                |      |
|       | Electrolytes in the soil $\sqrt[]{}$ or salts dissolved $$ in the moist soil. $$                                                         | (2)  |
|       | Mg is oxidised or becomes corroded or used up. $\checkmark$                                                                              | (1)  |
| 1.2.4 | $Mg \rightarrow Mg^{2+} + 2e^{-}\sqrt{\sqrt{1-1}}$                                                                                       | (2)  |
| 1.2.5 | Any two:                                                                                                                                 |      |
| •     | Paint√                                                                                                                                   |      |
| •     | Electroplating√                                                                                                                          |      |
| •     | Oil or waterproofing                                                                                                                     |      |
| •     | Galvanising                                                                                                                              |      |
| •     | Plastic coating                                                                                                                          | (2)  |
| 1.2.6 | Advantage: ANY ONE:                                                                                                                      | . ,  |
|       | <ul> <li>Plastic is cheaper√</li> </ul>                                                                                                  |      |
|       | Does not rust                                                                                                                            |      |
|       | Disadvantage: Any one:                                                                                                                   |      |
|       | <ul> <li>Not degradable√</li> </ul>                                                                                                      |      |
|       | Not as strong as iron                                                                                                                    | (2)  |
|       | -                                                                                                                                        | [19] |
|       |                                                                                                                                          |      |



### HOMEWORK SOLUTIONS: SESSION 10 TOPIC: CONSOLIDATION EXERCISES ON MECHANICS AND MATTER AND MATERIALS

#### **QUESTION 1**

1.1 W = hf 
$$\checkmark$$
 = 6,63 x 10<sup>-34</sup> x 9,4 x 10<sup>14</sup> $\checkmark$   
= 6,2 x 10<sup>-19</sup> J $\checkmark$  (3)

1.2 hf = W + 
$$E_{K}$$

 $6,63 \ge 10^{-34} \checkmark \ge 2,2 \ge 10^{15} \checkmark = 6,2 \ge 10^{-19} + E_{K} \checkmark$ 

$$E_{\rm K} = 8,39 \times 10^{-19} \,{\rm J}\checkmark \tag{5}$$

1.3 
$$E_{K} = \frac{1}{2} \text{ mv}^{2} \checkmark$$
  
8,32 x 10<sup>-19</sup>  $\checkmark = \frac{1}{2} (9,1x10^{-31}) v^{2} \checkmark$  (m is the mass of an electron)  
v = 1,35 x 10<sup>6</sup> m·s<sup>-1</sup>  $\checkmark$  (4)  
[12]

2.1 W = hf 
$$\checkmark$$
 = 6,63 x 10<sup>-34</sup> x 4,47 x 10<sup>15</sup>  $\checkmark$   
= 2,96 x 10<sup>-19</sup> J  $\checkmark$  (3)

2.2 
$$v = \lambda f \checkmark$$
  
 $3 \times 10^{8} \checkmark = (234 \times 10^{-9}) f \checkmark$   
 $f = 1,3 \times 10^{15} Hz \checkmark$   
 $hf = W + E_{K} \checkmark$   
 $6,63 \times 10^{-34} \times 1,3 \times 10^{15} \checkmark = 7,3 \times 10^{-19} + E_{K} \checkmark$   
 $E_{K} = 1,32 \times 10^{-19} J \checkmark$ 
(8)  
[11]

#### **QUESTION 3**

The longer wavelength of the star in comparison to the sun suggests red shift.  $\checkmark$  This is the Doppler effect  $\checkmark$  in relation to light. As the star moves away from the earth,  $\checkmark$  the waves spread apart  $\checkmark$  so we detect a longer wavelength.  $\checkmark$  [5]



GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME

PHYSICAL SCIENCES GRADE 12 SESSION 11 (LEARNER HOMEWORK SOLUTIONS)

### HOMEWORK SOLUTIONS: SESSION 11 TOPIC: CONSOLIDATION EXERCISES ON SOUND, DOPPLER EFFECT AND LIGHT

#### **QUESTION 1**

| 1.1 | The ability of a wave to bend / spread out (in wave fronts) $\checkmark$ as they |  |  |  |
|-----|----------------------------------------------------------------------------------|--|--|--|
|     | pass through a (small) aperture / opening OR around a (sharp) edge/              |  |  |  |
|     | points /corners / barrier. 🗸                                                     |  |  |  |

1.2 1.2.1 Angle of / (Degree of) diffraction ✓

1.3 (Slit) 1 ✓

Slit 1 represents the most diffraction. ✓

#### OR

OR

Diffraction /Angle / sin  $\theta$  /  $\theta$  is inversely proportional to slit width.  $\checkmark$ 

$$\sin\theta \alpha \frac{1}{a}$$
 or  $\theta \alpha \frac{1}{a} \checkmark$ 

### OR

Larger angle at which first minimum for slit 1 is obtained.  $\checkmark$ 

### OR

Smaller angle at which first minimum for slit 2 is obtained.  $\checkmark$ 

1.4

$$\sin \theta = \frac{m\lambda}{a} \checkmark$$

$$\checkmark \qquad \checkmark \qquad \checkmark$$

$$\sin 5^{\circ} = \frac{(1)(410 \times 10^{-9})}{a}$$

$$\therefore a = 4,70 \times 10^{-6} \text{ m } \checkmark (0,000047 \text{ m } / 4,7 \,\mu\text{m})$$
[10]

#### **QUESTION 2**

- 2.1 Every point on a wave front acts as a source of secondary wavelets ✓ that spread out in all directions ✓ with the same speed and the same frequency as the wave. (2)
- 2.2 As the wave passes through the slit, the slit acts as a source for secondary wavelets, ✓which moves out in all directions, ✓ including the area behind the slit. ✓ (3)

[5]

(2)

(1) (1)

(2)





The SSIP is supported by

#### HOMEWORK SOLUTIONS : SESSION 12 TOPIC: CONSOLIDATION EXERCISES ON ORGANIC MOLECULES AND THEIR REACTIONS

#### **QUESTION 1**

- 1.1 Structural isomers are organic molecules that have the same molecular formulae but different structural formulae.  $\checkmark\checkmark$
- 1.2 All members of a homologous series obey the same general formula ,i.e. they have the same number of carbon and hydrogen atoms if it is a hydrocarbon, e.g., alkanes have a general formula of  $C_nH_{2n+2}$ .
- 1.3 All the organic molecules in a homologous series have the same functional group, and they obey the same general formula.  $\checkmark\checkmark$
- 1.4 A functional group is a bond or an atom or a group of atoms that all the members of the homologous series have in common.  $\checkmark\checkmark$

#### **QUESTION 2**

| Н     | H H   | С     | I F   | 1       |                        |
|-------|-------|-------|-------|---------|------------------------|
|       |       |       |       |         |                        |
| H— C- | — C — | - C — | - C – | - C — H |                        |
|       |       |       |       |         |                        |
| Н     | Н     | Н     | Н     | Н       | $\checkmark\checkmark$ |
|       |       |       |       |         |                        |

2.2

2.1

#### **QUESTION 3**

| 3.1 | A and D | $\checkmark\checkmark$ |
|-----|---------|------------------------|
| 3.2 | A and B | $\checkmark\checkmark$ |
| 3.3 | С       | $\checkmark\checkmark$ |
| 3.4 | E       | $\checkmark\checkmark$ |



8

[8]

[4]

[8]

### **HOMEWORK SOLUTIONS: SESSION 13** TOPIC: CONSOLIDATION EXERCISES ON RATES, CHEMICAL EQUILIBRIUM AND **ELECTROCHEMISTRY**

#### **QUESTION 1**

| 1.1 | silver√√ | 2) |
|-----|----------|----|
|     |          | ⊆) |

1.2 Ni (s) 
$$\rightarrow$$
 Ni<sup>2+</sup> (aq) + 2e<sup>-</sup>  $\sqrt{\sqrt{}}$  (2)

1.3 silver
$$\sqrt{\sqrt{}}$$
 (2)

1.4 Ni(s)/Ni<sup>2+</sup>(aq), 1 mol·dm<sup>-3</sup> // Ag<sup>+</sup> (aq), 1 mol·dm<sup>-3</sup> /Ag  
$$\sqrt{}$$
  $\sqrt{}$   $\sqrt{}$ 

1.5 
$$E^{\theta}_{cell} = E^{\theta}_{cathode} - E^{\theta}_{anode} \sqrt{$$
  
= 0,80  $\sqrt{-(-0,25)}\sqrt{}$   
 $E^{\theta}_{cell} = 1,05 \vee \sqrt{}$  (4)

[13]

(3)

#### **QUESTION 2**

- 2.1 С 2.2 D 2.3 В
- 2.4 D
- 2.5 С
- 2.6 D
- 2.7 С
- 2.8
- В
- 2.9 С
- 2.10 C 2.11 В
- 2.12 С
- 2.13 A

(13 x 2) [26]



**SESSION 14** 

(LEARNER HOMEWORK SOLUTIONS)

HOMEWORK SOLUTIONS: SESSION 14 TOPIC 1: ELECTROSTATICS - GRADE 11 REVISION

GRADE 12

#### **QUESTION 1**

PHYSICAL SCIENCES

1.1

$$F = \frac{kQ_1Q_2}{r^2} = \frac{\left(9 \times 10^9\right)\left(4 \times 10^{-6}\right)\left(6x10^{-6}\right)}{(0.4)^2} = 1.35 \,\mathrm{N} \qquad \checkmark$$

(4)

1.3 E  $(6\mu C) = kQ/r^2$ =  $(9 \times 10^9) (6 \times 10^{-6})/(0.,2)^2$ = 1,35 x  $10^6 \text{ N} \cdot \text{C}^{-1}$  to the left.

> E  $(4\mu C) = kQ/r^2$ =  $(9 \times 10^9) (4 \times 10^{-6})/(0.,6)^2$   $\checkmark$

> > =  $1 \times 10^6 \text{ N} \cdot \text{C}^{-1}$  to the right.

Take to the right as positive:

$$E_{\text{net}} = -1,35 \times 10^{6} + 1 \times 10^{5} = -1,25 \times 10^{6} \text{ N} \cdot \text{C}^{-1}$$
  
= 1,25 x 10<sup>6</sup> N \cdot C^{-1} to the left  $\checkmark$  (6)

1.4 New charge = 
$$(+4x10^{-6}) + (-6x10^{-6})/2 = -1 \times 10^{-6} C \checkmark$$

$$U = kQ_1Q_2/r$$
  
= (9 x 10<sup>9</sup>)(-1 x 10<sup>-6</sup>)<sup>2</sup> /0,4   
= 2,25 x 10<sup>-2</sup> J   
(5)  
[16]



| GAUTENG DEPARTMENT OF EDUCATION |          | SENIOR SEC        | ONDARY INTERVENTION PROGRAMME |
|---------------------------------|----------|-------------------|-------------------------------|
| PHYSICAL SCIENCES               | GRADE 12 | <b>SESSION 14</b> | (LEARNER HOMEWORK SOLUTIONS)  |

### **QUESTION 2**

- 2.1 The current through a conductor is directly proportional to the potential difference across its ends at constant temperature.  $\checkmark\checkmark$  (2)
- 2.2 Equal ✓

<u>2 A divides equally at T</u> (and since  $I_M$  = 1 A it follows that  $I_N$  = 1 A)  $\checkmark$ 

OR

$$I \alpha \frac{1}{R}, \therefore R_M = R_N$$
 (2)

2.3 emf = IR + Ir  $\checkmark$  : 17 = 14 + Ir  $\checkmark$  : Ir = 3 V

$$r = \frac{V_{lost}}{I} \checkmark = \frac{3}{2} \checkmark = 1,5 \ \Omega \checkmark$$
(5)

2.4 
$$V_N = IR_N \checkmark = (1)(2) \checkmark = 2 \lor \checkmark$$
 (3)

2.5 
$$V_Y = 14 - 2 = 12 \vee \checkmark$$
  
 $V_Y = IR_Y \checkmark \therefore 12 = (2)R_Y \checkmark$   
 $\therefore R_Y = 6 \Omega \checkmark$ 
(4)



PHYSICAL SCIENCES GRADE 12 SESSION 15 (LEARNER HOMEWORK SOLUTIONS)

#### **HOMEWORK SOLUTIONS: SESSION 15**

TOPIC: ELECTRODYNAMICS - MOTORS AND GENERATORS AND ALTERNATING CURRENT

#### **QUESTION 1**

| 1.1 | С | 1.4 | D |
|-----|---|-----|---|
| 1.2 | В | 1.5 | С |
| 1.3 | D |     |   |

## (5 x 2) **[10]**

#### **QUESTION 2**

| 2.1   | There will be more current, more movement results. $\sqrt[4]{}$                                                                                                                                                                                                               | (2)               |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 2.1.1 | To stop the current briefly every 180° and to swop the directon of the current every 180°. $\checkmark$                                                                                                                                                                       | (1)               |
| 2.1.2 | To allow for free rotation of the coil. $$                                                                                                                                                                                                                                    | (1)               |
| 2.2   | Yes. $$ More current can be run through the coil. $$ (Changing the number of coils or the strength of the magnets would be changing the actual structure of the motor.)                                                                                                       | (2)               |
| 2.3   | A motor converts electrical energy into kinetic energy $$ and a generator converts kinetic energy into electrical energy. $$ In a motor the current needs to be provided and movement is created. In a generator the movement needs to be provided and a current is produced. | (2)               |
| 2.4   | More interaction of the magnetic field causes the conductor to have more current induced in it. $$ So the faster the movement, the greater the current. $$                                                                                                                    |                   |
| QUES  | STION 3                                                                                                                                                                                                                                                                       | [10]              |
| 3.1   | $I = I_0 \sin \omega t \sqrt{\sqrt{\sigma}} $ or $I = I_0 \sin 2\pi f t$                                                                                                                                                                                                      | (2)               |
| 3.2   | $I_{RMS} = I_0 / \sqrt{2} \sqrt{\sqrt{2}}$                                                                                                                                                                                                                                    | (2)               |
| 3.3   | $V_0 = \sqrt{2} V_{RMS} \sqrt{1} = 1,414 \times 240 \sqrt{1} = 339,36 V \sqrt{10}$                                                                                                                                                                                            | (3)               |
| 3.4   | The average value of the current over the cycle is zero and no useful power is delivered. $\sqrt[]{}$                                                                                                                                                                         | (2)<br><b>[9]</b> |





The SSIP is supported by