SENIOR SECONDARY IMPROVEMENT PROGRAMME 2013

GRADE 12

PHYSICAL SCIENCES

LEARNER HOMEWORK SOLUTIONS
mindset

TABLE OF CONTENTS

LEARNER HOMEWORK SOLUTIONS

SESSION	TOPIC	PAGE
8	Chemical Equilibrium	3
9	Electrolytic and galvanic cells	5
10	Consolidation exercises - mechanics and matter, and materials	6
11	Consolidation exercises - sound, Doppler effect and light	7
12	Consolidation exercises - organic molecules and their reactions	8
13	Consolidation exercises - rates, chemical equilibrium and electrochemistry	9
14	1. Electrostatics - Grade 11 revision 2. Electricity - Grade 11 revision	10
15	Electrodynamics - motors and generators and alternating current.	12

HOMEWORK SOLUTIONS : SESSION 8
 TOPIC: CHEMICAL EQUILIBRIUM

QUESTION 1

1.1 The forward reaction is exothermic. \checkmark Thus, lowering the temperature favours the forward, exothermic reaction and the ammonia will now have a higher yield. However, the rate of reaction will be lowered and this will lead to the ammonia production being unprofitable. \checkmark
1.2.1

	NH_{3}	O_{2}	NO	$\mathrm{H}_{2} \mathrm{O}$
Initial concentration $\left(\mathrm{mol} \cdot \mathrm{dm}^{-3}\right)$	1	1	0	0
Change in concentration $\left(\right.$ mol $\left.\cdot \mathrm{dm}^{-3}\right)$	0,25	0,3125	0,25	0,375
Equilibrium concentration $\left(\mathrm{mol}^{-3 m}\right)$	$0,75 \checkmark$	$0,6875 \checkmark$	$0,25 \checkmark$	$0,375 \checkmark$

K_{c}

$$
\begin{align*}
& =\frac{\left[\mathrm{NO}^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}\right.}{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}} \\
& =\frac{(0,25)^{4}(0,375)^{6}}{(0,75)^{4}(0,6875)^{5}} \\
& =2,2 \times 10^{-4} \\
& \tag{9}\\
&
\end{align*}
$$

1.2.2 Low. \checkmark The small equilibrium constant value indicates that the equilibrium lies towards the reactants side \checkmark and that there are more reactant molecules in the reaction mixture at equilibrium, thus NO will have a low yield.

QUESTION 2

	N_{2}	O_{2}	NO
Initial number of mole (mol)	7	2	0
Number of moles used/formed (mol)	0,2	0,2	0,4
Number of moles at equilibrium (mol)	6,8	1,8	0,4
Equilbrium concentration $\left(\mathrm{mol}^{-3} \mathrm{dm}^{-3}\right) \mathrm{c}=\mathrm{n} / \mathrm{V}$	$3,4 \checkmark$	$0,9 \checkmark$	$0,2 \checkmark$

$$
\mathrm{K}_{\mathrm{c}} \quad=[\mathrm{NO}]^{2}
$$

$\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]$

$$
\begin{aligned}
= & \left(\underline{0,2)^{2}}\right. \\
& (3,4)(0,9) \\
= & 0,013
\end{aligned}
$$

HOMEWORK SOLUTIONS: SESSION 9
 TOPIC: ELECTROLYTIC AND GALVANIC CELLS

QUESTION 1

1.1.1 $\mathrm{Fe} \rightarrow \mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \sqrt{ }$
1.1.2 Oxygen $\sqrt{ }$
1.1.3 $E_{\text {cell }}^{\theta}=E_{\text {cathode }}^{\theta}-E_{\text {anode }}^{\theta} V$
$=0,4 \sqrt{ }-(-0,44) \sqrt{ }$
$\mathrm{E}_{\text {cell }}^{\theta}=0,84 \mathrm{~V}$ V
Because the emf is positive, the reaction is spontaneous. V
1.1.1 Mg is a stronger reducing agent $\sqrt{ }$ than Fe and will be oxidised $\sqrt{ }$

Or Mg loses electrons more easily than Fe and becomes oxidised.
Or Fe is a weaker reducing agent than Mg and will not be oxidised.
1.2.2 Electrolytes in the soil $\sqrt{ }$ Vor salts dissolved $\sqrt{ }$ in the moist soil. $\sqrt{ }$
1.2.3 Mg is oxidised or becomes corroded or used up. $\sqrt{ }$
1.2.4 $\mathrm{Mg} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{e}^{-} \sqrt{ } \sqrt{ }$
1.2.5 Any two:

- Paint $\sqrt{ }$
- Electroplating $\sqrt{ }$
- Oil or waterproofing
- Galvanising
- Plastic coating
1.2.6 Advantage: ANY ONE:
- Plastic is cheaper $\sqrt{ }$
- Does not rust

Disadvantage: Any one:

- Not degradable $\sqrt{ }$
- Not as strong as iron

HOMEWORK SOLUTIONS: SESSION 10

TOPIC: CONSOLIDATION EXERCISES ON MECHANICS AND MATTER AND MATERIALS

QUESTION 1

1.1 $W=h f \checkmark=6,63 \times 10^{-34} \times 9,4 \times 10^{14} \checkmark$

$$
\begin{equation*}
=6,2 \times 10^{-19} \mathrm{~J} \checkmark \tag{3}
\end{equation*}
$$

$1.2 \mathrm{hf}=\mathrm{W}+\mathrm{E}_{\mathrm{K}}$
$6,63 \times 10^{-34} \checkmark \times 2,2 \times 10^{15} \checkmark=6,2 \times 10^{-19}+E_{K} \checkmark$
$E_{K}=8,39 \times 10^{-19} \mathrm{~J} \checkmark$
$1.3 \quad E_{K}=1 / 2 \mathrm{mv}^{2} \checkmark$
$8,32 \times 10^{-19} \checkmark=1 / 2\left(9,1 \times 10^{-31}\right) v^{2} \quad \checkmark$ (m is the mass of an electron)
$v=1,35 \times 10^{6} \mathrm{~m} \cdot \mathrm{~s}^{-1} \checkmark$

QUESTION 2

2.1 $W=h f \checkmark=6,63 \times 10^{-34} \times 4,47 \times 10^{15} \checkmark$

$$
\begin{equation*}
=2,96 \times 10^{-19} \mathrm{~J} \checkmark \tag{3}
\end{equation*}
$$

$2.2 v=\lambda f \checkmark$
$3 \times 10^{8} \checkmark=\left(234 \times 10^{-9}\right) \mathrm{f} \checkmark$
$f=1,3 \times 10^{15} \mathrm{~Hz} \checkmark$
$h f=W+E_{K}$
$6,63 \times 10^{-34} \times 1,3 \times 10^{15} \checkmark=7,3 \times 10^{-19}+E_{K} \checkmark$
$E_{K}=1,32 \times 10^{-19} \mathrm{~J} \checkmark$

QUESTION 3

The longer wavelength of the star in comparison to the sun suggests red shift. \checkmark This is the Doppler effect \checkmark in relation to light. As the star moves away from the earth, \checkmark the waves spread apart \checkmark so we detect a longer wavelength.

HOMEWORK SOLUTIONS: SESSION 11

TOPIC: CONSOLIDATION EXERCISES ON SOUND, DOPPLER EFFECT AND LIGHT

QUESTION 1

1.1 The ability of a wave to bend / spread out (in wave fronts) \checkmark as they pass through a (small) aperture / opening OR around a (sharp) edge/ points /corners / barrier.
1.2 1.2.1 Angle of / (Degree of) diffraction \checkmark
1.2.2 (Slit) width \checkmark
1.3 (Slit) $1 \checkmark$

Slit 1 represents the most diffraction.
OR
Diffraction /Angle / $\sin \theta / \theta$ is inversely proportional to slit width. \checkmark
OR
$\sin \theta \alpha \frac{1}{a}$ or $\theta \alpha \frac{1}{a} \checkmark$
OR
Larger angle at which first minimum for slit 1 is obtained.
OR
Smaller angle at which first minimum for slit 2 is obtained. \checkmark
1.4

QUESTION 2

2.1 Every point on a wave front acts as a source of secondary wavelets \checkmark that spread out in all directions \checkmark with the same speed and the same frequency as the wave.
2.2 As the wave passes through the slit, the slit acts as a source for secondary wavelets, \checkmark which moves out in all directions, \checkmark including the area behind the slit. \checkmark (3)

HOMEWORK SOLUTIONS : SESSION 12

TOPIC: CONSOLIDATION EXERCISES ON ORGANIC MOLECULES AND THEIR REACTIONS

QUESTION 1

1.1 Structural isomers are organic molecules that have the same molecular formulae but different structural formulae. $\checkmark \checkmark$
1.2 All members of a homologous series obey the same general formula ,i.e. they have the same number of carbon and hydrogen atoms if it is a hydrocarbon, e.g., alkanes have a general formula of $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$.
1.3 All the organic molecules in a homologous series have the same functional group, and they obey the same general formula. $\checkmark \checkmark$
1.4 A functional group is a bond or an atom or a group of atoms that all the members of the homologous series have in common.

QUESTION 2

2.1

2.2

QUESTION 3

3.1	A and D	$\checkmark \checkmark$
3.2	A and B	$\checkmark \checkmark$
3.3	C	$\checkmark \checkmark$
3.4	E	$\checkmark \checkmark$

HOMEWORK SOLUTIONS: SESSION 13
 TOPIC: CONSOLIDATION EXERCISES ON RATES, CHEMICAL EQUILIBRIUM AND ELECTROCHEMISTRY

QUESTION 1

1.1 silver $\sqrt{ } \downarrow$

$1.2 \mathrm{Ni}(\mathrm{s}) \rightarrow \mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \sqrt{ } \sqrt{ }$
1.3 silver $\sqrt{ } \downarrow$
$1.4 \mathrm{Ni}(\mathrm{s}) / \mathrm{Ni}^{2+}(\mathrm{aq}), 1 \mathrm{~mol} \cdot \mathrm{dm}^{-3} \quad / / \quad \mathrm{Ag}^{+}(\mathrm{aq}), 1 \mathrm{~mol} \cdot \mathrm{dm}^{-3} / \mathrm{Ag}$
$1.5 \mathrm{E}^{\theta}$ cell $=\mathrm{E}^{\theta}$ cathode $-\mathrm{E}^{\theta}$ anode V

$$
\begin{align*}
= & 0,80 \vee-(-0,25) V \\
& E_{\text {cell }}^{\theta}=1,05 \mathrm{~V} ~ \tag{4}
\end{align*}
$$

QUESTION 2
2.1 C
2.2 D
2.3 B
2.4 D
2.5 C
2.6 D
2.7 C
2.8 B
2.9 C
2.10 C
2.11 B
2.12 C
2.13 A

HOMEWORK SOLUTIONS: SESSION 14

TOPIC 1: ELECTROSTATICS - GRADE 11 REVISION

QUESTION 1

1.1

$$
F=\frac{k Q_{1} Q_{2}}{r^{2}}=\frac{\left(9 \times 10^{9}\right)\left(4 \times 10^{-6}\right)\left(6 \times 10^{-6}\right) \checkmark}{(0.4)^{2}} \checkmark \checkmark
$$

1.2 Four ${ }^{\checkmark}$
1.3 $E(6 \mu C)=k Q / r^{2}$

$$
\begin{aligned}
& =\left(9 \times 10^{9}\right)\left(6 \times 10^{-6}\right) /(0 ., 2)^{2} \\
& =1,35 \times 10^{6} \mathrm{~N} \cdot \mathrm{C}^{-1} \text { to the left. }
\end{aligned}
$$

$E(4 \mu C)=k Q / r^{2}$

$$
\begin{aligned}
& =\left(9 \times 10^{9}\right)\left(4 \times 10^{-6}\right) /(0 ., 6)^{2} \\
& =1 \times 10^{6} \mathrm{~N} \cdot \mathrm{C}^{-1} \text { to the right. }
\end{aligned}
$$

Take to the right as positive:

$$
\begin{align*}
\mathrm{E}_{\text {net }}=-1,35 \times 10^{6}+1 \times 10^{5}= & -1,25 \times 10^{6} \mathrm{~N} \cdot \mathrm{C}^{-1} \\
& =1,25 \times 10^{6} \mathrm{~N} \cdot \mathrm{C}^{-1} \text { to the left } \tag{6}
\end{align*}
$$

1.4 New charge $=\left(+4 \times 10^{-6}\right)+\left(-6 \times 10^{-6}\right) / 2=-1 \times 10^{-6} \mathrm{C} \checkmark$

$$
\begin{align*}
& U=k Q_{1} Q_{2} / r \\
&=\left(9 \times 10^{9}\right)\left(-1 \times 10^{-6}\right)^{2} \checkmark / 0,4 \\
&=2,25 \times 10^{-2} \mathrm{~J} \tag{5}
\end{align*}
$$

QUESTION 2

2.1 The current through a conductor is directly proportional to the potential difference across its ends at constant temperature. $\checkmark \checkmark$
2.2 Equal \checkmark
$\underline{2 \mathrm{~A} \text { divides equally at } T}$ (and since $\mathrm{I}_{\mathrm{M}}=1 \mathrm{~A}$ it follows that $\mathrm{I}_{\mathrm{N}}=1 \mathrm{~A}$) \checkmark OR
$l \propto \frac{1}{R}, \therefore \mathrm{R}_{\mathrm{M}}=\mathrm{R}_{\mathrm{N}}$
2.3 emf $=\operatorname{IR}+\operatorname{lr} \checkmark \therefore 17=14+\operatorname{lr} \checkmark \therefore \mathrm{Ir}=3 \mathrm{~V}$
$r=\frac{V_{\text {lost }}}{I} \checkmark=\frac{3}{2} \checkmark=1,5 \Omega \checkmark$
$2.4 \quad V_{N}=\mathbb{R}_{N} \checkmark=(1)(2) \checkmark=2 \vee \checkmark$
$2.5 \quad V_{Y}=14-2=12 V \checkmark$
$V_{Y}=\operatorname{IR}_{Y} \checkmark \therefore 12=(2) \operatorname{R}_{Y} \checkmark$
$\therefore R_{Y}=6 \Omega \checkmark$

HOMEWORK SOLUTIONS: SESSION 15

TOPIC: ELECTRODYNAMICS - MOTORS AND GENERATORS AND ALTERNATING CURRENT

QUESTION 1

1.1 C
1.4 D
1.2 B
1.5 C
1.3 D

QUESTION 2

2.1 There will be more current, more movement results. $\sqrt{ } \sqrt{ }$
2.1.1 To stop the current briefly every 180° and to swop the directon of the current every 180°. V
2.1.2 To allow for free rotation of the coil. $\sqrt{ }$
2.2 Yes. $\sqrt{ }$ More current can be run through the coil. $\sqrt{ }$ (Changing the number of coils or the strength of the magnets would be changing the actual structure of the motor.)
2.3 A motor converts electrical energy into kinetic energy V and a generator converts kinetic energy into electrical energy. $\sqrt{ }$ In a motor the current needs to be provided and movement is created. In a generator the movement needs to be provided and a current is produced.
2.4 More interaction of the magnetic field causes the conductor to have more current induced in it. $\sqrt{ }$ So the faster the movement, the greater the current. $\sqrt{ }$

QUESTION 3

$3.1 \quad I=I_{0} \sin \omega t V \sqrt{ }$ or $I=I_{0} \sin 2 \pi f t$
$3.2 \mathrm{I}_{\mathrm{RMS}}=\mathrm{I}_{0} / \sqrt{ } 2 \mathrm{~V} \sqrt{ }$
$3.3 \quad V_{0}=\sqrt{ } 2 V_{\text {RMS }} V=1,414 \times 240 V=339,36 \mathrm{~V} \sqrt{ }$
3.4 The average value of the current over the cycle is zero and no useful power is delivered. $\sqrt{ } \sqrt{ }$

