SENIOR SECONDARY IMPROVEMENT PROGRAMME 2013

GAUTENG PROVINCE

GRADE 12

PHYSICAL SCIENCES

LEARNER HOMEWORK SOLUTIONS
nindset \boldsymbol{D}

TABLE OF CONTENTS

LEARNER HOMEWORK SOLUTIONS

SESSION	TOPIC	PAGE
16	Consolidation exercises - rates, chemical equilibrium and electrochemistry	3
17	Chemical change and chemical systems - extraction of aluminium and Chloralkali industry,	$4-5$
18	1. Electrostatics - Grade 11 revision 2. Electricity - Grade 11 revision	$6-7$
19	Electrodynamics - motors and generators and alternating current.	8

HOMEWORK SOLUTIONS: SESSION 16

TOPIC: CONSOLIDATION EXERCISES ON RATES, CHEMICAL EQUILIBRIUM AND ELECTROCHEMISTRY

QUESTION 1

1.1 silver $\sqrt{ } \downarrow$
$1.2 \mathrm{Ni}(\mathrm{s}) \rightarrow \mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \sqrt{ } \sqrt{ }$
1.3 silver $\sqrt{ } \sqrt{ }$
$1.4 \mathrm{Ni}(\mathrm{s}) / \mathrm{Ni}^{2+}(\mathrm{aq}), 1 \mathrm{~mol} \cdot \mathrm{dm}^{-3} \quad / / \quad \mathrm{Ag}^{+}(\mathrm{aq}), 1 \mathrm{~mol} \cdot \mathrm{dm}^{-3} / \mathrm{Ag}$
$1.5 \quad \mathrm{E}^{\theta}$ cell $=\mathrm{E}^{\theta}$ cathode $-\mathrm{E}^{\theta}$ anode $\sqrt{ }$

$$
\begin{align*}
= & 0,80 \vee-(-0,25) \vee \\
& \mathrm{E}^{\theta} \text { cell }=1,05 \mathrm{~V} \text { V } \tag{4}
\end{align*}
$$

QUESTION 2

2.1 C
2.2 D
2.3 B
2.4 D
2.5 C
2.6 D
2.7 C
2.8 B
2.9 C
2.10 C
2.11 B
2.12 C
2.13 A

HOMEWORK SOLUTIONS: SESSION 17

TOPIC: CHEMICAL CHANGE AND CHEMICAL SYSTEMS - EXTRACTION OF ALUMINIUM AND CHLORALKALI INDUSTRY

QUESTION 1

$1.1 \quad \mathrm{P}$:

$$
\begin{equation*}
2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \checkmark \checkmark \quad \mathrm{OR} / O F \quad \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow 1 / 2 \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{e}^{-} \tag{4}
\end{equation*}
$$

Q:
$2 \mathrm{H}_{2} \mathrm{O}(\ell)+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq}) \checkmark \checkmark$
$1.2 \quad \mathrm{H}_{2} \mathrm{O}$ is a stronger oxidising agent (than $\left.\mathrm{Na}^{+}\right)^{\checkmark}$
and is more readily reduced than the $\mathrm{Na}^{+} . \checkmark$
1.3 Allows only the cation $\left(\mathrm{Na}^{+}\right)$to move across to the cathode compartment.. \checkmark
OR
To separate the Cl^{-}ions from the OH^{-}..

1.4 Any TWO:

As chemical reactant in the production of:

- Medicines to cure diseases
- Polymers
- PVC to make plastic products e.g. pipes, insulation, handbags
- Nylon for carpeting, clothing, etc.
- Household products, e.g. toiletries, cosmetics, CDs etc.
- Hydrochloric acid used in building industry and swimming pools
- Bromine used in photography
- Solvents, e.g. "tippex"
- Solvents used for dry cleaning
- Titanium dioxide used as white pigment in paint
- Dyes used in textile industry
- Pesticides used to protect crops
- Compounds that can be used to sterilise medical equipment, e.g. kidney dialysis machines, wounds and work surfaces in medical labs
- Extraction of titanium used in aircrafts

As disinfectant to:

- Purify/sterilise drinking water

As bleaching agent in the:

- Textile industry
- Paper industry

QUESTION 2

$2.1 \quad 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) \checkmark \checkmark$
2.2
$2 \mathrm{H}_{2} \mathrm{O}(\ell)+2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})^{\checkmark}$ bal \checkmark
2.3 - Allows the migration of positive ions from anode to cathode \checkmark

- Prevents mixing of products \checkmark
$2.4 \quad \mathrm{H}_{2} \mathrm{O}$ is a stronger oxidising agent than $\mathrm{Na}^{+} \checkmark$ and will be reduced. \checkmark OR
Na^{+}is a weaker oxidising agent than $\mathrm{H}_{2} \mathrm{O} \checkmark$ and will not be reduced. \checkmark

2.5 Any ONE:

- Chlorine gas is poisonous - causes health problems/breathing complications \checkmark
- Chlorine gas is used to make drugs that can be dangerous when overdosing
- Chlorine used as nerve gas.

HOMEWORK SOLUTIONS: SESSION 18
 TOPIC 1: ELECTROSTATICS - GRADE 11 REVISION

QUESTION 1

1.1

$$
F=\frac{k Q_{1} Q_{2}}{r^{2}}=\frac{\left(9 \times 10^{9}\right)\left(4 \times 10^{-6}\right)\left(6 \times 10^{-6}\right) \checkmark}{(0.4)^{2}} \checkmark \quad \checkmark \quad 1.35 \mathrm{~N}
$$

1.2 Four
1.3 $\quad E(6 \mu C)=k Q / r^{2} \quad \checkmark$

$$
\begin{aligned}
& =\left(9 \times 10^{9}\right)\left(6 \times 10^{-6}\right) /(0 ., 2)^{2} \\
& =1,35 \times 10^{6} \mathrm{~N} \cdot \mathrm{C}^{-1} \text { to the left. }
\end{aligned}
$$

$E(4 \mu C)=k Q / r^{2}$

$$
\begin{aligned}
& =\left(9 \times 10^{9}\right)\left(4 \times 10^{-6}\right) /(0 ., 6)^{2} \\
& =1 \times 10^{6} \mathrm{~N} \cdot \mathrm{C}^{-1} \text { to the right. }
\end{aligned}
$$

Take to the right as positive:

$$
\begin{align*}
E_{\text {net }}=-1,35 \times 10^{6}+1 \times 10^{5} & =-1,25 \times 10^{6} \mathrm{~N} \cdot \mathrm{C}^{-1} \\
& =1,25 \times 10^{6} \mathrm{~N} \cdot \mathrm{C}^{-1} \text { to the left } \tag{6}
\end{align*}
$$

1.4 New charge $=\left(+4 \times 10^{-6}\right)+\left(-6 \times 10^{-6}\right) / 2=-1 \times 10^{-6} \mathrm{C} \checkmark$

$$
\begin{align*}
& U=k Q_{1} Q_{2} / r \\
&=\left(9 \times 10^{9}\right)\left(-1 \times 10^{-6}\right)^{2} \checkmark / 0,4 \\
&=2,25 \times 10^{-2} \mathrm{~J} \tag{5}
\end{align*}
$$

QUESTION 2

2.1 The current through a conductor is directly proportional to the potential difference across its ends at constant temperature. $\checkmark \checkmark$
2.2 Equal \checkmark
$\underline{2 \text { A divides equally at } T}$ (and since $I_{M}=1 \mathrm{~A}$ it follows that $I_{N}=1 \mathrm{~A}$) \checkmark OR
$I \alpha \frac{1}{R}, \therefore \mathrm{R}_{\mathrm{M}}=\mathrm{R}_{\mathrm{N}}$
2.3 emf $=\operatorname{IR}+\operatorname{Ir} \checkmark \therefore 17=14+\operatorname{lr} \checkmark \therefore \operatorname{Ir}=3 \mathrm{~V}$
$r=\frac{V_{\text {lost }}}{l} \checkmark=\frac{3}{2} \checkmark=1,5 \Omega \checkmark$
$2.4 \quad V_{N}=I R_{N} \checkmark=(1)(2) \checkmark=2 V \checkmark$
$2.5 \quad V_{Y}=14-2=12 V \checkmark$
$V_{Y}=I R_{Y} \checkmark \therefore 12=(2) R_{Y} \checkmark$
$\therefore R_{Y}=6 \Omega \checkmark$

HOMEWORK SOLUTIONS: SESSION 19

TOPIC: ELECTRODYNAMICS - MOTORS AND GENERATORS AND ALTERNATING CURRENT

QUESTION 1

1.1 C
1.4 D
$1.2 \quad \mathrm{~B}$
1.5 C
1.3 D

QUESTION 2

2.1 There will be more current, more movement results. $\sqrt{ } \sqrt{ }$
2.1.1 To stop the current briefly every 180° and to swop the directon of the current every 180°. $\sqrt{ }$
2.1.2 To allow for free rotation of the coil. $\sqrt{ }$
2.2 Yes. $\sqrt{ }$ More current can be run through the coil. $\sqrt{ }$ (Changing the number of coils or the strength of the magnets would be changing the actual structure of the motor.)
2.3 A motor converts electrical energy into kinetic energy V and a generator converts kinetic energy into electrical energy. $\sqrt{ }$ In a motor the current needs to be provided and movement is created. In a generator the movement needs to be provided and a current is produced.
2.4 More interaction of the magnetic field causes the conductor to have more current induced in it. $\sqrt{ }$ So the faster the movement, the greater the current. $\sqrt{ }$

QUESTION 3

$3.1 \quad I=I_{0} \sin \omega t \sqrt{ } \sqrt{ }$ or $I=I_{0} \sin 2 \pi f t$
$3.2 \mathrm{I}_{\mathrm{RMS}}=\mathrm{I}_{0} / \sqrt{ } 2 \mathrm{~V} \sqrt{ }$
$3.3 \quad V_{0}=\sqrt{ } 2 V_{\text {RMS }} V=1,414 \times 240 V=339,36 \mathrm{~V} \sqrt{ }$
3.4 The average value of the current over the cycle is zero and no useful power is delivered. $\sqrt{ } \sqrt{ }$

