SENIOR SECONDARY IMPROVEMENT PROGRAMME 2013

GRADE 12

PHYSICAL SCIENCES

LEARNER HOMEWORK SOLUTIONS

The SSIP is supported by

TABLE OF CONTENTS

LEARNER HOMEWORK SOLUTIONS

SESSION	TOPIC	PAGE
16	Consolidation exercises – rates, chemical equilibrium and electrochemistry	3
17	Chemical change and chemical systems – extraction of aluminium and Chloralkali industry,	4 - 5
18	 Electrostatics - Grade 11 revision Electricity – Grade 11 revision 	6 - 7
19	Electrodynamics – motors and generators and alternating current.	8

PHYSICAL SCIENCES GRADE 12

SESSION 16 (LEARNER HOMEWORK SOLUTIONS)

HOMEWORK SOLUTIONS: SESSION 16 TOPIC: CONSOLIDATION EXERCISES ON RATES, CHEMICAL EQUILIBRIUM AND ELECTROCHEMISTRY

QUESTION 1

1.1	silver√√	(2)	

1.2 Ni (s)
$$\rightarrow$$
 Ni²⁺ (aq) + 2e⁻ $\sqrt{\sqrt{}}$ (2)

1.3 silver
$$\sqrt{\sqrt{}}$$
 (2)

1.4 Ni(s)/Ni²⁺(aq), 1 mol·dm⁻³ // Ag⁺ (aq), 1 mol·dm⁻³ /Ag
$$\sqrt{}$$
 $\sqrt{}$ $\sqrt{}$

1.5
$$E^{\theta}_{cell} = E^{\theta}_{cathode} - E^{\theta}_{anode} \sqrt{$$

= 0,80 $\sqrt{-(-0,25)}\sqrt{}$
 $E^{\theta}_{cell} = 1,05 \vee \sqrt{}$ (4)

[13]

(3)

QUESTION 2

- 2.1 С 2.2 D
- 2.3 В
- 2.4 D
- 2.5 С
- 2.6 D
- С
- 2.7
- 2.8 В
- 2.9 С
- 2.10 C
- 2.11 В
- 2.12 С 2.13 A

(13 x 2) **[26]**

GAUTENG DEPARTMENT OF EDUCATION

PHYSICAL SCIENCES GRADE 12 SESSION 17 (LEARNER HOMEWORK SOLUTIONS)

HOMEWORK SOLUTIONS: SESSION 17

TOPIC: CHEMICAL CHANGE AND CHEMICAL SYSTEMS - EXTRACTION OF ALUMINIUM AND CHLORALKALI INDUSTRY

QUESTION 1

1.1	P:	
	$2C\ell^{-} \rightarrow C\ell_2(g) + 2e^{-} \checkmark \checkmark \qquad OR/OF \qquad C\ell^{-}(aq) \rightarrow \frac{1}{2}C\ell_2(g) + e^{-}$	
	Q:	(4)
	$2H_2O(\ell) + 2e^- \rightarrow H_2(g) + 2OH^-(aq) \checkmark \checkmark$	(4)
1.2	<u>H_2O is a stronger oxidising agent</u> (than Na ⁺) \checkmark	
	and is more readily reduced than the Na ⁺ . ✓	(2)
1.3	Allows only the cation (Na $^{+}$) to move across to the cathode	
	compartment 🖌	
	OR	(1)
	To separate the C^{Γ} ions from the OH^{Γ}	(')

To separate the $C\ell$ ions from the OH..

1.4 Any TWO:

As chemical reactant in the production of:

- Medicines to cure diseases
- Polymers
 - PVC to make plastic products e.g. pipes, insulation, handbags
 Nylon for carpeting, clothing, etc.
- Household products, e.g. toiletries, cosmetics, CDs etc.
- Hydrochloric acid used in building industry and swimming pools
- Bromine used in photography
- Solvents, e.g. "tippex"
- Solvents used for dry cleaning
- Titanium dioxide used as white pigment in paint
- Dyes used in textile industry
- Pesticides used to protect crops
- Compounds that can be used to sterilise medical equipment, e.g. kidney dialysis machines, wounds and work surfaces in medical labs
- Extraction of titanium used in aircrafts

As disinfectant to:

• Purify/sterilise drinking water

As bleaching agent in the:

- Textile industry
- Paper industry

(2) **[9]**

GAUTENG DEPARTMENT OF EDUCATION

SENIOR SECONDARY INTERVENTION PROGRAMME

PHYSICAL SCIENCES GRADE 12 SESSION 17 (LEARNER HOMEWORK SOLUTIONS)

QUESTION 2

2.1
$$2H_2O + 2e^- \rightarrow 2OH^-(aq) + H_2(g) \checkmark \checkmark$$
 (2)
2.2 $2H_2O(l) + 2Cl^-(aq) \rightarrow 2OH^-(aq) + H_2(g) + Cl_2(g)$ bal \checkmark (3)
2.3 • Allows the migration of positive ions from anode to cathode \checkmark (2)
2.4 H_2O is a stronger oxidising agent than Na⁺ \checkmark and will be reduced. \checkmark (2)
2.4 H_2O is a stronger oxidising agent than $H_2O \checkmark$ and will not be reduced. \checkmark (2)
2.5 **Any ONE**:
• Chlorine gas is poisonous – causes health problems/breathing complications \checkmark
• Chlorine used to make drugs that can be dangerous when overdosing
• Chlorine used as nerve gas. (1)
[10]

GAUTENG DEPARTMENT OF EDUCATION

PHYSICAL SCIENCES GRADE 12 SESSION 18 (LEARNER HOMEWORK SOLUTIONS)

HOMEWORK SOLUTIONS: SESSION 18 TOPIC 1: ELECTROSTATICS - GRADE 11 REVISION

QUESTION 1

1.1

$$F = \frac{kQ_1Q_2}{r^2} = \frac{\left(9 \times 10^9\right)\left(4 \times 10^{-6}\right)\left(6x10^{-6}\right)}{(0.4)^2} = 1.35 \,\mathrm{N} \qquad \checkmark$$

(4)

1.3 E
$$(6\mu C) = kQ/r^2$$

= $(9 \times 10^9) (6 \times 10^{-6})/(0.,2)^2$
= 1,35 x 10⁶ N·C⁻¹ to the left.

E $(4\mu C) = kQ/r^2$ = $(9 \times 10^9) (4 \times 10^{-6})/(0.,6)^2$ \checkmark

= $1 \times 10^6 \text{ N} \cdot \text{C}^{-1}$ to the right.

Take to the right as positive:

$$E_{\text{net}} = -1,35 \times 10^{6} + 1 \times 10^{5} = -1,25 \times 10^{6} \text{ N} \cdot \text{C}^{-1}$$

= 1,25 x 10⁶ N·C⁻¹ to the left \checkmark (6)

1.4 New charge =
$$(+4x10^{-6}) + (-6x10^{-6})/2 = -1 \times 10^{-6} \text{ C}$$

$$= (9 \times 10^{9})(-1 \times 10^{-6})^{2} \sqrt{0.4}$$

$$= 2.25 \times 10^{-2}$$

$$= 2.25 \times 10^{-2}$$

$$(5)$$

GAUTENG DEPARTMENT O	F EDUCATION	SENIOR SEC	ONDARY INTERVENTION PROGRAMME
PHYSICAL SCIENCES	GRADE 12	SESSION 18	(LEARNER HOMEWORK SOLUTIONS)

QUESTION 2

- 2.1 The current through a conductor is directly proportional to the potential difference across its ends at constant temperature. $\checkmark\checkmark$ (2)
- 2.2 Equal ✓

<u>2 A divides equally at T</u> (and since I_M = 1 A it follows that I_N = 1 A) \checkmark

OR

$$I \alpha \frac{1}{R}, \therefore R_M = R_N$$
 (2)

2.3 emf = $IR + Ir \checkmark :. 17 = 14 + Ir \checkmark :. Ir = 3 V$

$$r = \frac{V_{lost}}{I} \checkmark = \frac{3}{2} \checkmark = 1,5 \ \Omega \checkmark$$
(5)

2.4
$$V_N = IR_N \checkmark = (1)(2) \checkmark = 2 \lor \checkmark$$
 (3)

2.5
$$V_Y = 14 - 2 = 12 \vee \checkmark$$

 $V_Y = IR_Y \checkmark \therefore 12 = (2)R_Y \checkmark$
 $\therefore R_Y = 6 \Omega \checkmark$
(4)

PHYSICAL SCIENCES GRADE 12 SESSION 19 (LEARNER HOMEWORK SOLUTIONS)

HOMEWORK SOLUTIONS: SESSION 19

TOPIC: ELECTRODYNAMICS - MOTORS AND GENERATORS AND ALTERNATING CURRENT

QUESTION 1

1.1	С	1.4	D
1.2	В	1.5	С
1.3	D		

(5 x 2) **[10]**

QUESTION 2

2.1	There will be more current, more movement results. $\sqrt[4]{}$	(2)
2.1.1	To stop the current briefly every 180° and to swop the directon of the current every 180°. \checkmark	(1)
2.1.2	To allow for free rotation of the coil. \checkmark	(1)
2.2	Yes. $$ More current can be run through the coil. $$ (Changing the number of coils or the strength of the magnets would be changing the actual structure of the motor.)	(2)
2.3	A motor converts electrical energy into kinetic energy $$ and a generator converts kinetic energy into electrical energy. $$ In a motor the current needs to be provided and movement is created. In a generator the movement needs to be provided and a current is produced.	(2)
2.4	More interaction of the magnetic field causes the conductor to have more current induced in it. $$ So the faster the movement, the greater the current. $$	
QUES	STION 3	[10]
3.1	$I = I_0 \sin \omega t \sqrt{} \text{ or } I = I_0 \sin 2\pi f t$	(2)
3.2	$I_{RMS} = I_0 / \sqrt{2} \sqrt{\sqrt{2}}$	(2)
3.3	$V_0 = \sqrt{2} V_{RMS} \sqrt{1} = 1,414 \times 240 \sqrt{1} = 339,36 V \sqrt{1}$	(3)
3.4	The average value of the current over the cycle is zero and no useful power is delivered. $\sqrt[]{}$	(2) [9]

