SENIOR SECONDARY INTERVENTION PROGRAMME 2013

GRADE 12

PHYSICAL SCIENCES

LEARNER HOMEWORK SOLUTIONS

TABLE OF CONTENTS

SESSION	TOPIC	PAGE
1	Topic 1. Motion in 2D: vertical projectile motion Topic 2. Conservation of momentum	$3-5$
2	Work, power, energy	6-8
3	Topic 1. Photo electric effect Topic 2. Electromagnetic radiation	$9-10$
4	Topic 1. Organic molecules: structure and properties Topic 2. Organic molecules: reaction	11-12
5	Consolidation	13-15
6	Topic 1:Sound \& Doppler Effect Topic 2:Light \& Electromagnetic waves	16-18
7	Topic 1: Energy Changes, Rates of reactions Topic 2: Chemical Equilibrium	19-22

TOPIC 1: MECHANICS - PROJECTILE MOTION

SOLUTIONS TO HOMEWORK

QUESTION 1

$1.1 \quad 0 \mathrm{~m} \cdot \mathrm{~s}^{-2}$
$1.2 \quad 9,8 \mathrm{~m} \cdot \mathrm{~s}^{-2} \checkmark$ downwards \checkmark
$1.2 \quad \Delta y=$?

$$
v_{f}^{2}=v_{i}^{2}+2 g \Delta y
$$

$$
0^{2}=(5)^{2}+2(-9,8) \Delta y
$$

$$
\begin{array}{l|l}
v_{i}=5 \mathrm{~m} \cdot \mathrm{~s}^{-1} & \mathrm{y}=1,28 \mathrm{~m} \text { }
\end{array}
$$

$$
V_{f}=0 \mathrm{~m} \cdot \mathrm{~s}^{-1}
$$

$\therefore \mathrm{y}=1,28 \mathrm{~m}$ upwards

$$
\begin{equation*}
g=-9,8 \mathrm{~m} \cdot \mathrm{~s}^{-2} \tag{3}
\end{equation*}
$$

\therefore Maximum height (P) is $101,28 \mathrm{~m}$
1.3

t	$=?$
v_{i}	$=5 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
V_{f}	$=0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
g	$=-9,8 \mathrm{~m} \cdot \mathrm{~s}^{-2}$

$$
\begin{aligned}
v_{f} & =v_{i}+g \Delta t \\
0 & =5+(-9,8) \Delta t \\
\therefore t & =0,51 \mathrm{~s}
\end{aligned}
$$

$$
1.4 \begin{aligned}
& \Delta x=101,28 \mathrm{~m} \\
& t=? \\
& v_{i}=0 \mathrm{~m} \cdot \mathrm{~s}^{-1} \quad \begin{aligned}
& \Delta x=v_{i} \Delta t+1 / 2 g \Delta t^{2} \\
& 101,28=(0) \Delta t+1 / 2(9,8)(\Delta \mathrm{t})^{2} \\
& 101,28=4,9 t^{2} \\
& t^{2}=20,67 \\
& t=4,55 \mathrm{~s} \\
& t
\end{aligned} \quad \begin{aligned}
-2 \\
\hline
\end{aligned} \\
&
\end{aligned}
$$

$$
\begin{equation*}
\therefore \text { total time }=0,51+4,55=5,06 \mathrm{~s} \tag{4}
\end{equation*}
$$

1.5 Velocity increases
$F_{R}=0$; so $F_{A}=-$ weight, but weight decreases, but F_{A} is constant
; so there is an upwards F_{R}; and an upwards acceleration etc.

TOPIC 2: CONSERVATION OF MOMENTUM

SOLUTIONS TO HOMEWORK

QUESTION 1

1.1 Consider to the left as positive
$\Sigma m_{i} v_{i}=\Sigma m_{f} v_{f}$
pbefore $=p_{\text {after }} O R m_{A} v_{i A}+m_{B} V_{i B}=m_{A} V_{f A}+m_{B} V_{f B} \checkmark$
$(1000)(0)+(1200)(18) \checkmark=(1000)(12)+(1200) v_{\text {fB }} \checkmark$
$9600=(1200) v_{f B}$
$\mathrm{V}_{\mathrm{fB}}=8 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
1.2 Not an isolated system / external forces present / frictional forces present / driver in front car has his foot on the brake. $\checkmark \checkmark$
1.3 During the collision, both cars experience a force of equal magnitude \checkmark This net force on the car with larger mass causes it to experience a smaller acceleration, $\sqrt{ }$ therefore, the passenger will experience a smaller change in velocity and will be less injured.
For a specific Fnet $\Delta \mathrm{t}: \Delta \mathrm{p}$ (heavy car) $=\Delta \mathrm{p}$ (light car) \checkmark $m_{H}\left(v_{f}-v i\right)_{H}=m_{L}\left(v_{f}-v_{i}\right)_{L}$ but $m_{H}>m_{L}$ and $\left(v_{f}-v_{i}\right)_{H}<\left(v_{f}-v_{i}\right)_{L} \checkmark$
Therefore a passenger will experience a smaller change in velocity \checkmark and gets less injured.

2.1 Choose the direction to the right as positive

Total p before collision $=$ Total p after collision

$$
\left.\begin{array}{rl}
m v_{i(\text { Franck })}+m v_{i(\text { Mandla })}+m v_{i(\text { trolley })} & =\mathrm{mv}_{\mathrm{f}(\text { Franck })}+m v_{\mathrm{f}(\text { Mandla })}+m v_{\mathrm{f}(\text { (rolley })} \\
(50)(0)+(80)(0)+(180)(0) & =(50)(-3)^{\checkmark}+(80)(3)^{\checkmark}+(180) \cdot v_{f} \\
\checkmark & 0
\end{array}\right)=-150+240+180 \mathrm{v}_{\mathrm{f}} .
$$

Choose the direction to the left as positive

Total p before collision $=$ Total p after collision

2.2 There is friction between the ground and the wheels
2.3 Mandla has a larger change in momentum ${ }^{\checkmark}$ than Franck (because Mandla has a bigger mass) and will therefore exert a bigger forge on the trolley than Franck in the same time $(0,2 \mathrm{~s})$. This means that there is a resultant force (net force) on the trolley towards Franck (or away from Mandla) and the acceleration of the trolley is towards Franck (or away from Mandla).

2.4 Direction to the right as positive ${ }_{\checkmark}$

$\mathrm{F}_{\text {(Trolley on Mandla) }} \cdot \Delta \mathrm{t}=\mathrm{m}_{\text {(Mandla) }} \Delta \mathrm{v}_{\text {(Mandla) }}$
$F(0,2)=(80)(3-0)$
$F=1200 \mathrm{~N}$ to the right
The magnitude of the force $=1200 \mathrm{~N}$

OR

Direction to the left as positive
$F_{\text {(Mandla on trolley\& Franck) }} . \Delta t=m_{\text {(trolley) }} \Delta v+m_{(\text {Franck })} \Delta v$
$F(0,2) \quad=(180)(0,5-0)+(50)(3-0)^{\checkmark}$
$F=1200 \mathrm{~N}$ to the left \checkmark
(3)
2.5 The two forces act on different objects \checkmark and cannot cancel \checkmark each other out

OR

They are action-reaction forces \checkmark according to Newton's third Law and thus do not cancel each other out \checkmark

WORK, ENERGY AND POWER

SOLUTIONS TO HOMEWORK

QUESTION 1

Mechanical Energy $=E_{p}+E_{k}=m g h+1 / 2 m v^{2} \checkmark$

$$
\begin{aligned}
& =(1200)(9,8)(10) \checkmark+1 / 2(1200)(15)^{2} \checkmark \\
& =252600 \mathrm{~J} \checkmark
\end{aligned}
$$

$\mathrm{P}=\mathrm{W} / \mathrm{t} \checkmark$

$$
\begin{aligned}
\mathrm{P} & =252600 / 60 \checkmark \\
& =4210 \mathrm{~W} \checkmark
\end{aligned}
$$

[7]

QUESTION 2

$$
\begin{equation*}
W=F \Delta x \cdot \cos \alpha \checkmark=(50)(3) \cos 48^{\circ} \checkmark=100,37 J \checkmark \tag{3}
\end{equation*}
$$

QUESTION 3

3.1. $\mathrm{E}_{\mathrm{p}}=\mathrm{mgh} \checkmark=(88)(9,8)(7) \checkmark=6036,8 \mathrm{~J} \checkmark$
3.2. $W=F \Delta x \cdot \cos \alpha \checkmark=(108)(7) \checkmark=756 J \checkmark$
3.3. $v_{f}^{2}=v_{i}^{2}+2 g \Delta x \checkmark$

$$
\begin{align*}
& 0 \checkmark=v_{i}^{2}+2(-9,8)(7) \\
& v_{i}=11,71 \mathrm{~m} \cdot \mathrm{~s}^{-1} \checkmark \tag{4}
\end{align*}
$$

3.4. $E_{p}=m g h \checkmark=(2)(9,8)(7) \checkmark=137,2 \mathrm{~J} \checkmark$
3.5. 12 bricks in a minute - each brick takes $5 \mathrm{~s} \checkmark$
$P=W / t \checkmark=137,2 / 5 \checkmark=27,44 W \checkmark$

QUESTION 4

$4.18 \mathrm{~m} . \mathrm{s}^{-1} \checkmark \checkmark$
(2)
4.2 Direction up is positive
$v^{2}{ }_{f}=v_{i}^{2}+2 a \Delta y$
$\begin{aligned} \checkmark(0)^{2} & =(8)^{2}+2(-9,8) \Delta y \quad \\ 0 & =64-19,6 \Delta y \\ \Delta y & =3,27 m\end{aligned}$
4.3.1 When the ball lands in the gutter, the gutter exerts an upward force on the ball. The system is not isolated \checkmark any more. Work is done by the upward force and some of the mechanical energy of the ball is converted \checkmark into heat and sound.
4.3.2 Energy is converted into other forms (like heat and sound) \checkmark
4.4 $\quad E_{\text {mech at start }}=m g h+1 / 2 m v^{2}$
$=(0,01)(9,8)(0)+1 / 2(0,01)(8)^{2}$
$=0,32 \mathrm{~J}$
$E_{\text {mech at start }}=m g h+1 / 2 m v^{2}$
$=(0,01)(9,8)(0)+1 / 2(0,01)(7)^{2}$
OR

$$
\begin{align*}
& E_{\text {mech at max height }}=m g h+1 / 2 m v^{2} \\
& =(0,01)(9,8)(3,27)+1 / 2(0,01)(0)^{2 \checkmark} \\
& =0,32 \mathrm{~J} \\
& E_{\text {mech in gutter }}=m g h+1 / 2 m v^{2} \\
& =(0,01)(9,8)(2,5)+1 / 2(0,01)(0)^{2} \\
& =0,245 \mathrm{~J} \\
& W_{\text {gutter }}=\Delta E_{\text {mech }}=E_{\text {gutter }}-E_{\text {max height }} \\
& =0,245-0,32=-0,075 \mathrm{~J} \tag{5}
\end{align*}
$$

4.5

- Both Axes correctly labelled
- Intercepts on axes correct
- No graph up to 1,22 s
- Constant line between 1,22 s and 1,75s
- Curve with negative gradient from 1,75 s to $2,43 \mathrm{~s}$

QUESTION 5

5.1 $\quad \mathrm{W}_{\text {net }}=\Delta \mathrm{K} \checkmark$
$\mathrm{W}_{\mathrm{f}}+\mathrm{W}_{\mathrm{N}}+\mathrm{W}_{\mathrm{Fg}}=\Delta \mathrm{K}$
$\mathrm{f} \Delta \mathrm{x} \cos \theta+0+0=1 / 2 m v_{\mathrm{f}}^{2}-1 / 2 m v_{\mathrm{i}}^{2} \checkmark$
$(30)(2)\left(\cos 180^{\circ}\right) \quad \checkmark=1 / 2(3) v_{f}^{2}-1 / 2(3)(7)^{2} \checkmark$
$-60=1 / 2(3) v_{f}^{2}-73,5$

$$
\begin{equation*}
v_{f}=3 \mathrm{~m} \cdot \mathrm{~s}^{-1} \checkmark \tag{5}
\end{equation*}
$$

5.2

F_{N} = normal force
$\mathrm{W}_{\text {II }}=$ parallel component of weight
$W_{\perp}=$ perpendicular component of weight

5.3 $\mathrm{W}_{\text {net }}=\Delta \mathrm{K}$

$$
\begin{align*}
& W_{\mathrm{WII}}+\mathrm{W}_{\mathrm{N}}+\mathrm{W}_{\perp}=\Delta \mathrm{K} \\
& \mathrm{~W}_{\|} \Delta \mathrm{x} \cos \theta+0+0=1 / 2 \mathrm{mv}_{\mathrm{f}}^{2}-1 / 2 \mathrm{mv} v_{\mathrm{i}}^{2} \checkmark \\
& \mathrm{mg} \sin 20^{\circ} \Delta x \cos 180^{\circ} \checkmark=0-1 / 2(3)(3)^{2} \\
& (3)(9,8) \sin 20^{\circ} \mathrm{d}(-1) \checkmark=0-1 / 2(3)(3)^{2} \\
& d=1,34 \mathrm{~m} \checkmark \tag{5}
\end{align*}
$$

QUESTION 6:

6.1 $\quad E_{p}=m g h ~ u ̈=(88)(9,8)(7)$ ü $=6036,8 \mathrm{Jü}$
6.2. $W=F \Delta x \cdot \cos \alpha u ̈=(108)(7)$ ü $=756$ Jü
6.3. $v_{f}^{2}=v_{i}^{2}+2 g \Delta x u ̈$

0 ü $=v_{i}^{2}+2(-9,8)(7) \quad$ ü
$v_{i}=11,71 \mathrm{~m} \cdot \mathrm{~s}^{-1} \mathrm{u}$
6.4. $\quad E_{p}=m g h u ̈=(2)(9,8)(7)$ ü $=137,2 \mathrm{Jü}$
6.5. 12 bricks in a minute - each brick takes 5 sü
$P=W / t u ̈=137,2 / 5 u ̈=27,44 \mathrm{Wü}$

TOPIC 1: PHOTOELECTRIC EFFECT

SOLUTIONS TO HOMEWORK

QUESTION 1

1.1 Minimum energy needed to eject electrons from a certain material/metal. $\checkmark \checkmark$
1.2

$$
\begin{align*}
\mathrm{E} & =\mathrm{hc} / \lambda \checkmark \tag{2}\\
\therefore & 6,9 \times 10^{-19} \checkmark=\left(6,63 \times 10^{-34}\right)\left(3 \times 10^{8}\right) / \lambda \checkmark \\
\therefore \lambda & =288,26 \times 10^{-9} \mathrm{~m} \checkmark=288,26 \mathrm{~nm} \tag{4}
\end{align*}
$$

1.3

$$
\begin{align*}
E k & =\underline{h c}-W \\
& =\frac{\left(6,63 \times 10^{-34}\right)\left(3 \times 10^{8}\right)}{260 \times 10^{-9}} \checkmark-6,9 \times 10^{-19} \checkmark \\
& =7,65 \times 10^{-19}-6,9 \times 10^{-19} \\
& =7,5 \times 10^{-20} \mathrm{~J} \checkmark \tag{4}
\end{align*}
$$

1.4 The positively charged zinc plate will attract electrons \checkmark preventing them from being emitted.

QUESTION 2

2.1 Photo-electric effect \checkmark
$2.2 c=f \lambda r$
$\therefore 3 \times 10^{8}=f\left(200 \times 10^{-9}\right) \checkmark$
$\therefore f=1,5 \times 10^{15} \mathrm{~Hz}$
$\mathrm{f}_{0}=\mathrm{W}_{\mathrm{o}} / \mathrm{h} \checkmark$

$$
\begin{equation*}
=\frac{7,57 \times 10^{-19}}{\left.6,63 \times 10^{-34} \checkmark=1,14 \times 10^{15} \mathrm{~Hz} \checkmark ~\right) ~} \tag{6}
\end{equation*}
$$

Frequency $\left(1,5 \times 10^{15} \mathrm{~Hz}\right)$ greater than threshold frequency $\left(1,14 \times 10^{15} \mathrm{~Hz}\right) \quad \checkmark$
2.3.1 The energy of the photo-electrons remains unchanged \checkmark as the frequency / wavelength of the photons did not change. \checkmark
2.3.2 Number of photo-electrons (per second) is increased \checkmark. When the intensity is increased the number of photons will increase, releasing an increased number of electrons.

TOPIC 2: ELECTROMAGNETIC RADIATION AND SPECTRA

SOLUTIONS TO HOMEWORK

QUESTION 1

Emission lines are evidence of light (energy) being given off \checkmark as electrons fall through energy levels \checkmark. Absorption spectra lines are evidence of certain frequencies of energy being taken in \checkmark by the atom as the electrons go to higher energy levels. \checkmark Since the energy levels of a particular element have the same energy level spacings \checkmark, the energy emitted (shown as a colour) will correspond exactly with the energy absorbed (shown by a black line) \checkmark

QUESTION 2

$$
\begin{aligned}
& E=h f \checkmark \\
& 1,89 \times 10^{-24} \checkmark=\left(6,6 \times 10^{-34}\right) \checkmark f \\
& f=2,9 \times 10^{9} \mathrm{~Hz} \checkmark
\end{aligned}
$$

This frequency corresponds to the radio wave region of the electromagnetic spectrum. \checkmark

QUESTION 3

$3.1 \quad v=\lambda f \checkmark$

$$
\begin{align*}
& 3 \times 10^{8} \checkmark=\lambda\left(405 \times 10^{6}\right) \checkmark \\
& \lambda=0,74 \mathrm{~m} \checkmark \tag{4}
\end{align*}
$$

3.2 radior
3.3 $\mathrm{E}=\mathrm{hf} \checkmark=\left(6,6 \times 10^{-34}\right) \checkmark\left(405 \times 10^{6}\right) \checkmark$ $=2,67 \times 10^{-25} \mathrm{~J} \checkmark$

TOPIC 1: ORGANIC MOLECULES: STRUCTURES AND PHYSICAL PROPERTIES

SOLUTIONS TO HOMEWORK

QUESTION 1

1.1 Compounds that have the same molecular formula but different structural formulae. $\checkmark \checkmark$
1.2

methylmethanoate \checkmark metielmetanoaat

ethanoic acid \checkmark etanoësuur
1.3.1 Ethanoic acid. \checkmark The hydrogen bonds/intermolecular forces between ethanoic acid molecules are stronger than the Van der Waals forces/intermolecular forces between the ester molecules \checkmark
More energy needed to break bonds between ethanoic acidmolecules.
1.3.2 Methylmethanoate \checkmark The Van der Waals forces/intermolecular forces between the ester molecules are weaker than the hydrogen bonds/intermolecular forces between ethanoic acid molecules. Less energy needed to break bonds between the ester molecules.
1.4 Decrease \checkmark Van der Waals forces increase with molecular size \checkmark
D)

TOPIC 2: ORGANIC MOLECULES: REACTIONS

QUESTION 1

$$
\begin{array}{ll}
\text { 1.1 } & \text { Dichlorodifluoromethane } \checkmark \checkmark \\
\text { 1.2 } & \text { Low boiling point } \checkmark \tag{1}\\
& \text { OR }
\end{array}
$$

High volatility/high vapour pressure \checkmark

1.3.1 Damages the ozone layer \checkmark

1.3.2 Increase in (dangerous) UV rays that reaches earth \checkmark Higher occurrence of skin cancer/cataracts \checkmark
erio eo
1.4

1.5 Heat \checkmark

OR

Ultraviolet light
OR
Sunlight
$1.6 \quad \mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{CH}_{4} \checkmark \checkmark$

QUESTION 2

2.1 Elimination \checkmark

2.2 Alkenes

2.3 Addition/hydrohalogenation/hydrobromination \checkmark
$2.4 \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3} \checkmark \rightarrow \mathrm{CH}_{3} \mathrm{CHCHCH}_{3} \checkmark \checkmark+\mathrm{H}_{2} \mathrm{O} \checkmark$
2.5 Q

The major product is the one in which the H -atom is removed from the least substituted C -atom (the C -atom with the least number of hydrogen atoms \checkmark
$2.6 \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHBrCH}_{3} \checkmark \checkmark$ 2-bromobutane \checkmark No hyphen in the name: -1 mark

TOPIC: CONSOLIDATION EXERCISES

SOLUTIONS TO SECTION A

QUESTION 1

1.1

$$
\rho_{\text {before }}=\rho_{\text {after }}
$$

$$
m_{1} v_{i 1}+m_{2} v_{i 2}=\left(m_{1}+m_{2}\right) v_{f} \checkmark
$$

$(3000 \times 27,28) \checkmark+500 \times 0 \checkmark=(3000+500) v_{f}$

$$
\begin{equation*}
v_{f}=23,81 \mathrm{~m} \cdot \mathrm{~s}^{-1} \checkmark \tag{5}
\end{equation*}
$$

$1.2 \Delta p=m\left(v_{f}-v_{i}\right) \checkmark$
$=3000(23,81-27,78) \checkmark$
$=-11910 \mathrm{~kg} \cdot \mathrm{~m} \cdot \mathrm{~s}^{-1}$
$=11910 \mathrm{~kg} \cdot \mathrm{~m} \cdot \mathrm{~s}^{-1}$ in the opposite direction of the motion \checkmark
1.3 Drivers are distracted when using a cell phone while driving. This can lead to accidents which can result in injury and death. $\checkmark \checkmark$

QUESTION 2

2.1 The frequency is $\sqrt{ }$ inversely proportional $\sqrt{ }$ to the wavelength.
$2.2 c=f \lambda \checkmark$

$$
\begin{align*}
3 \times 10^{8} & =\left(6,67 \times 10^{14}\right) \lambda \\
\lambda & =4,5 \times 10^{-7} \mathrm{~m} \checkmark \text { UNITS } \tag{2}
\end{align*}
$$

2.3 (a) At hospital for X-rays/ cancer treatment \checkmark
(b) A radio/ TV/ radar \checkmark
(c) Infra red at the physiotherapist/ night vision/ stealth/ heater/ stove \checkmark
2.4 (a) $E=h f J$
(b) The energy associated with this frequency is very high $\sqrt{ }$ and is dangerous to all living matter. \checkmark damage
(c) Gamma \checkmark
(d) Hiroshima / Nagasaki $\checkmark /$ Japan in the 2nd World War. \checkmark

QUESTION 3

3.1

For complete motion of stone Upward motion negative
$\Delta y=v_{i} \Delta t+\frac{1}{2} a \Delta t^{2} \quad \checkmark 88 \checkmark=v_{i}(6) \checkmark+\frac{1}{2}(9,8)(6)^{2} \checkmark$
$v_{i}=-14,7 \mathrm{~m} \cdot \mathrm{~s}^{-1} \therefore 14,7 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ upwards \checkmark
$\mathrm{v}_{\text {balloon }}=\mathrm{v}_{\text {stone }} \sqrt{\checkmark}=14,7 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
3.2

Upward motion as negative:

Downward motion as negative:

Criteria for graph	Marks
Graph is a straight line that intercepts x-axis at $1,5 \mathrm{~s}$	\checkmark
Maximum velocity after 6 s	\checkmark
Initial velocity indicated as $14,7 \mathrm{~m} \cdot \mathrm{~s}^{-1}$	\checkmark

QUESTION 4

4.1 $\mathrm{Ep}=\mathrm{mgh} \checkmark$

$$
\begin{align*}
& =4 \times 9,8 \checkmark \times 0,2 \checkmark \\
& =7,84 J \checkmark \tag{4}
\end{align*}
$$

4.2 By conservation of Mechanical E

Mechanical E top $=$ Mechanical E bottom
$\left[m g h+1 / 2 m v^{2}\right]_{\text {top }}=\left[m g h+1 / 2 m v^{2}\right]_{\text {bottom }} \checkmark$ $4 \times 9,8 \times 0,2 \checkmark+1 / 2 \times 4 \times 0^{2} \checkmark=1 / 2 \times 4 \times v^{2} \checkmark+4 \times 9,8 \times 0 \checkmark$
$7,84=2 v^{2}$
$\mathrm{v}=1,97 \mathrm{~ms}^{-1}$ to the right
4.3 The total linear momentum of an isolated system \checkmark remains constant \checkmark in both magnitude and direction.
4.4

$$
\begin{align*}
& p_{\text {before }}=p_{\text {after }} \checkmark \\
& m_{1} v_{i 1}+m_{2} v_{i 2}=\left(m_{1}+m_{2}\right) v_{f} \\
& (0,1)\left(v_{i 1}\right) \checkmark+(3,9)(0) \checkmark=(0,1+3,9)(1,97) \checkmark \\
& 0,1 v_{i 1}=7,88 \\
& v_{f}=78,8 \mathrm{~m} \cdot \mathrm{~s}^{-1} \text { to the right } \checkmark \tag{5}
\end{align*}
$$

$4.5 \quad E_{k}=F \cdot x \cos \theta \checkmark$
$1 / 2 m v^{2} \checkmark=F \times 0,1 \checkmark \cos 0^{\circ} \checkmark$
$1 / 2(0,1)(78,8)^{2} \checkmark=F \times(0,1)$
$\mathrm{F}=3104,72 \mathrm{~N}$ in direction of arrow

TOPIC 1 : SOUND AND DOPPLER EFFECT

SOLUTIONS TO HOMEWORK

QUESTION 1

$1.1 \mathrm{v}=\mathrm{f} \lambda$

$$
340=500 \times \lambda
$$

$$
\begin{equation*}
\lambda=0,68 \mathrm{~m} \checkmark \tag{2}
\end{equation*}
$$

1.2 If the pitch is higher, then it is moving towards you. \checkmark If the pitch is lower, it is moving away from you. \checkmark
1.3 Doppler effect \checkmark
$1.4 \quad f_{L}=\left(\frac{v \pm v_{L}}{v \pm v_{s}}\right) f_{s}=\left(\frac{340}{340+v_{s}}\right) 500=495 \checkmark$

$$
\begin{equation*}
v_{s}=343 \mathrm{~m} \cdot \mathrm{~s}^{-1} \quad \text { away from observer } \checkmark \tag{5}
\end{equation*}
$$

QUESTION 2

2.1 Diagram shows waves compressed in front and stretched out at back
2.2 Formula One car goes much faster \checkmark and results in greater compressions \checkmark OR

The engine revs are higher \checkmark making the vibrations take place with greater frequency (2)
$2.3 f_{L}=\left(\frac{v \pm v_{L}}{v \pm v_{s}}\right) f_{s}=\left(\frac{340}{340-55.56}\right) 250=298,83 \mathrm{~Hz}$
\checkmark formula
\checkmark substitutions
\checkmark convert $\mathrm{km} \cdot \mathrm{h}^{-1}$ to $\mathrm{m} \cdot \mathrm{s}^{-1}$
\checkmark answer
mindset
learn
())

TOPIC 2: LIGHT, ELECTROMAGNETIC WAVES, 2D AND 3D WAVEFRONTS

SOLUTIONS TO HOMEWORK

QUESTION 1

1.1 A broad central band of bright red light flanked by alternating narrower black and not so bright red bands $\checkmark \checkmark$
1.2 All the bands will have equal width \checkmark and All the bands will be equally bright \checkmark
1.3

$$
\begin{align*}
& \sin \theta=\frac{m \lambda}{d}=\frac{1\left(700 \times 10^{-9}\right)^{\checkmark}}{5 \times 10^{-6}}=0.14 \tag{2}\\
& \theta=8.05^{\circ} \\
& \checkmark \tan 8.05^{\circ}=\frac{\frac{1}{2} \text { width }}{\text { distance }}=\frac{\frac{1}{2} \text { width }}{2} \checkmark \\
& \text { width }=0.028 \times 2=0.056 \mathrm{~m}
\end{align*}
$$

QUESTION 2

2.1

$$
\begin{align*}
& \sin \theta=\frac{m \lambda}{d} \\
& \sin 8^{0}=\frac{1 . \lambda}{4,59 \times 10^{-6}} \\
& \lambda=\sin 8^{0} .4,59 \times 10^{-6} \\
& =6,38804 \times 10^{-7} \mathrm{~m} \\
& =638,80 \mathrm{~nm} \tag{6}
\end{align*}
$$

2.2

Distance MN $=2 \times \mathrm{MO} \checkmark \checkmark \checkmark$
$=0,28 \times 2=0,56 \mathrm{~m}$

TOPIC 1: ENERGY CHANGES \& RATES OF REACTION

SOLUTIONS TO HOMEWORK

QUESTION 1

1.1. Heat of reaction - is the difference between the energy of the products and the energy of the reactants. $\checkmark \checkmark$
1.2. Endothermic reaction - a reaction that takes in energy, products have more
energy than the reactants $\checkmark \checkmark$
1.3. Activation energy - the 'energy hill' which must be 'overcome' by the addition of this amount of energy before a reaction can take place. $\checkmark \checkmark$

QUESTION 2

2.1. Exothermic $\checkmark \checkmark$
2.2. Endothermic $\checkmark \checkmark$

2.3. Exothermic $\checkmark \checkmark$

QUESTION 3

3.1. The sun $\checkmark \checkmark$
3.2. Flame $\checkmark \checkmark$
3.3. Flame $\checkmark \checkmark$

QUESTION 4

4.1. X-axis - course of reaction
Y-axis - potential energy \checkmark

4.2. Eproducts < Ereactants $\checkmark \checkmark$

4.3. Activated complex - temporary, unstable, high-energy composition of atoms, which represents a transition state between reactants and the products. $\checkmark \checkmark$
4.4. Negative \checkmark
4.5. Exothermic \checkmark

QUESTION 5

1.1 A larger mass of metal will produce more gas etc $\checkmark \checkmark$

The relationship between the dependent and independent variables must be given.

5.2 Temperature $\checkmark \checkmark$ and concentration $\checkmark \checkmark$

5.3 Any mass bigger than $1,6 \mathrm{~g}$ will not influence the volume of the gas produced. $\checkmark \checkmark(2)$
$5.4 \quad 160 \mathrm{~cm}^{3} \checkmark \checkmark$

QUESTION 6

As the temperature increases \checkmark, the number of molecules with the minimum kinetic energy required for a reaction to occur, increases \checkmark. The molecules will be moving faster \checkmark, the number of effective collisions will increase \checkmark and thus the rate of the reaction will increase \checkmark. Thus, the sugar dissolves faster in hot water.

QUESTION 7

7.1 It will be easier to form products from the reactants \checkmark because the activation energy is less \checkmark than the activation energy required to form the reactants from the products.
7.2 Carbon monoxide is toxic and can lead to atmospheric pollution and global warming. $\checkmark \checkmark$
7.3.1 It will lower the amount of CO produced and this will lead to less CO poisoning.

TOPIC 2: CHEMICAL EQUILIBRIUM

SOLUTIONS TO HOMEWORK

QUESTION 1

1.1 The forward reaction is exothermic. \checkmark Thus, lowering the temperature favours the forward, exothermic reaction and the ammonia will now have a higher yield. However, the rate of reaction will be lowered and this will lead to the ammonia production being unprofitable. \checkmark
1.2.1

	NH_{3}	O_{2}	NO	$\mathrm{H}_{2} \mathrm{O}$
Initial concentration $\left(\right.$ mol $\left.\cdot \mathrm{dm}^{-3}\right)$	1	1	0	0
Change in concentration $\left(\right.$ mol $\left.\cdot \mathrm{dm}^{-3}\right)$	0,25	0,3125	0,25	0,375
Equilibrium concentration $\left(\mathrm{mol}^{-3} \cdot \mathrm{dm}^{-3}\right)$	$0,75 \checkmark$	$0,6875 \checkmark$	$0,25 \checkmark$	$0,375 \checkmark$

$\left.\mathrm{K}_{\mathrm{c}} \quad=\left[\mathrm{NO}^{4}\right]^{4} \mathrm{H}_{2} \mathrm{O}\right]^{6}$ $\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}$
$=\frac{(0,25)^{4}(0,375)^{6} \checkmark}{(0,75)^{4}(0,6875)^{5}} \checkmark$
$=2,2 \times 10^{-4} \checkmark \checkmark$
1.2.2 Low. \checkmark The small equilibrium constant value indicates that the equilibrium lies towards the reactants side \checkmark and that there are more reactant molecules in the reaction mixture at equilibrium, thus NO will have a low yield.

PHYSICAL SCIENCES GRADE 12 SESSION 7 (LEARNER HOMEWORK SOLUTIONS)

QUESTION 2

	N_{2}	O_{2}	NO
Initial number of mole (mol)	7	2	0
Number of moles used/formed (mol)	0,2	0,2	0,4
Number of moles at equilibrium (mol)	6,8	1,8	0,4
Equilbrium concentration $\left(\mathrm{mol}^{-3} \mathrm{dm}^{-3}\right) \mathrm{c}=\mathrm{n} / \mathrm{V}$	$3,4 \checkmark$	$0,9 \checkmark$	$0,2 \checkmark$

$\mathrm{K}_{\mathrm{c}}=[\mathrm{NO}]^{2} \quad \checkmark$
$\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]$

$$
\begin{aligned}
& =\frac{(0,2)^{2}}{(3,4)(0,9)} \\
& =0,013
\end{aligned}
$$

