SENIOR SECONDARY INTERVENTION PROGRAMME 2013

education

Department: Education **GAUTENG PROVINCE**

GRADE 12

PHYSICAL SCIENCES

LEARNER HOMEWORK SOLUTIONS

The SSIP is supported by

TABLE OF CONTENTS

SESSION	TOPIC	PAGE
1	Topic 1. Motion in 2D: vertical projectile motion Topic 2. Conservation of momentum	3 – 5
2	Work, power, energy	6 – 8
3	Topic 1. Photo electric effect Topic 2. Electromagnetic radiation	9 – 10
4	Topic 1. Organic molecules: structure and properties Topic 2. Organic molecules: reaction	11 – 12
5	Consolidation	13 – 15
6	Topic 1:Sound & Doppler Effect Topic 2:Light & Electromagnetic waves	16 – 18
7	Topic 1: Energy Changes, Rates of reactions Topic 2: Chemical Equilibrium	19 – 22

SOLUTIONS TO HOMEWORK

QUESTION 1

1.1

$$0 \text{ m} \cdot \text{s}^{-2}$$
 \checkmark
 (1)

 1.2
 $9.8 \text{ m} \cdot \text{s}^{-2} \checkmark \text{downwards} \checkmark$
 $\checkmark \checkmark$
 (2)

1.2
$$\Delta y = ?$$

 $v_f^2 = v_i^2 + 2g\Delta y$
 $0^2 = (5)^2 + 2(-9,8)\Delta y$
 $v_i = 5 \text{ m} \cdot \text{s}^{-1}$
 $v_f = 0 \text{ m} \cdot \text{s}^{-1}$
 $g = -9.8 \text{ m} \cdot \text{s}^{-2}$
 $\therefore \text{ Maximum height (P) is 101,28 m}$
 (3)

1.3

$$t = ?$$

 $v_{f} = v_{i} + g\Delta t$
 $v_{i} = 5 \text{ m} \cdot \text{s}^{-1}$
 $V_{f} = 0 \text{ m} \cdot \text{s}^{-1}$
 $g = -9.8 \text{ m} \cdot \text{s}^{-2}$
 $v_{i} = 0$
 $\therefore t = 0,51 \text{ s}$
 (3)

1.4
$$\Delta x = 101,28 \text{ m}$$
$$\Delta x = v_{\mu}\Delta t + \frac{1}{2}g\Delta t^{2} \qquad \checkmark$$
$$t = ?$$
$$101,28 = (0)\Delta t + \frac{1}{2}(9,8)(\Delta t)^{2} \qquad \checkmark$$
$$101,28 = 4,9t^{2}$$
$$t^{2} = 20,67$$
$$t = 4,55 \text{ s} \qquad \checkmark$$
$$\therefore \text{ total time} = 0,51 + 4,55 = 5,06 \text{ s} \qquad \checkmark \qquad (4)$$

1.5 Velocity increases $\checkmark \checkmark$ $F_R = 0$; so $F_A = -$ weight, but weight decreases, but F_A is constant ; so there is an upwards F_R ; and an upwards acceleration etc. $\checkmark \checkmark$ [17]

mindset

SENIOR SECONDARY INTERVENTION PROGRAMME

PHYSICAL SCIENCES GRADE 12 SESSION 1 (LEARNER HOMEWORK SOLUTIONS)

TOPIC 2: CONSERVATION OF MOMENTUM

SOLUTIONS TO HOMEWORK

QUESTION 1

- 1.1 Consider to the left as positive $\Sigma m_i v_i = \Sigma m_f v_f$ pbefore = $p_{after} OR m_A v_{iA} + m_B v_{iB} = m_A v_{fA} + m_B v_{fB} \checkmark$ (1 000)(0) + (1 200)(18) \checkmark = (1000)(12) + (1 200) v_{fB} \checkmark 9 600 = (1 200) v_{fB} $v_{fB} = 8 \text{ m} \cdot \text{s}^{-1} \qquad \checkmark$ (4)
- 1.2 Not an isolated system / external forces present / frictional forces present / driver in front car has his foot on the brake. √√ (2)
- 1.3 During the collision, both cars experience a force of equal magnitude√ This net force on the car with larger mass causes it to experience a smaller acceleration,√therefore, the passenger will experience a smaller change in velocity and will be less injured. √

For a specific Fnet Δ t: Δ p(heavy car) = Δ p(light car) \checkmark

 $m_H(v_f - v_i)_H = m_L(v_f - v_i)_L$ but $m_H > m_L$ and $(v_f - v_i)_H < (v_f - v_i)_L \checkmark$

Therefore a passenger will experience a smaller change in velocity \checkmark and gets less injured. (3)

2.1 Choose the direction to the right as positive

Total p before collision = Total p after collision \checkmark $mv_{i(Franck)} + mv_{i(Mandla)} + mv_{i(trolley)} =$ $mV_{f(Franck)} + mV_{f(Mandla)} + mV_{f(trolley)}$ $(50)(-3)^{\checkmark} + (80)(3)^{\checkmark}$ + (180).V_f (50)(0) +(80)(0)+(180)(0) =0 -150 + 240 + 180v_f = -90 180v_f = - 0.5 m.s⁻¹ Vf = 0,5 m.s⁻¹ to the left \checkmark = (in the same as Franck) (6) OR

Choose the direction to the left as positive

Total p before collision = Total p after collision \checkmark

 $mv_{i(Franck)} + mv_{i(Mandla)} + mv_{i(trolley)} =$ $mV_{f(Franck)} + mV_{f(Mandla)} + mV_{f(trolley)}$ $(50)(3)^{\checkmark} + (80)(-3)^{\checkmark} + (180).v_{\rm f}$ (50)(0) + (80)(0)+(180)(0) = \checkmark 0 150 + -240 + 180v_f = 1 90 180v_f = $0,5 \text{ m.s}^{-1}$ to the left \checkmark Vf = (in the same as Franck

[9]

PHYSICAL SCIENCES G

GRADE 12

- 2 SESSION 1 (LEARNER HOMEWORK SOLUTIONS)
- 2.2 There is friction between the ground and the wheels
- 2.3 Mandla has a <u>larger change in momentum</u> ✓ than Franck (because Mandla has a bigger mass) and will therefore <u>exert a bigger forcé</u> on the trolley than Franck in the same time (0,2s). This means that there is <u>a resultant force (net førce)</u> on the trolley towards Franck (or away from Mandla) and the <u>acceleration</u> of the trolley is <u>towards Franck (or away from Mandla)</u>. (4)

2.4 Direction to the right as positive

 $F_{(Trolley \text{ on Mandla})}.\Delta t = m_{(Mandla)} \Delta v_{(Mandla)}$

F(0,2) = (80)(3-0)

F = 1200N to the right \checkmark

The magnitude of the force = 1200N

OR

Direction to the left as positive

 $F_{(Mandla on trolley \& Franck)}$. $\Delta t = m_{(trolley)} \Delta v + m_{(Franck)} \Delta v$

F(0,2) =
$$(180)(0,5-0) + (50)(3-0)^{\checkmark}$$

F = 1200N to the left \checkmark

(3)

2.5 The two forces act on different objects \checkmark and cannot cancel \checkmark each other out

OR

They are action-reaction forces \checkmark according to Newton's third Law and thus do not cancel each other out \checkmark (2)

[17]

(2)

GAUTENG DEPARTMENT OF EDUCATION	SENIOR SE	CONDARY INTERVENTION PROGRAMME
PHYSICAL SCIENCES GRADE 12	SESSION 2	(LEARNER HOMEWORK SOLUTIONS)
WORK, ENERGY AND POWER		
SOLUTIONS TO HOMEWORK		
QUESTION 1 Mechanical Energy = $E_p + E_k$ = mgh + $\frac{1}{2}$	₂ mv² ✓	
=(1200)(9,8)(10) ✓ + ½ (1200)(1	15) ² √	
= 252 600 J√		
P = W/t✓		
P = 252 600/60√		
= 4210 W✓		
		[7]
QUESTION 2		
W = F $\Delta x \cdot \cos \alpha \checkmark$ = (50)(3)cos48° \checkmark = 100,37	J√	[3]
QUESTION 3		
3.1. E _p =mgh ✓= (88)(9,8)(7) ✓= 6036,8 J✓		(3)
3.2. W = F∆x·cosa \checkmark = (108)(7) \checkmark = 756 J \checkmark		(3)
3.3. $v_f^2 = v_i^2 + 2g\Delta x \checkmark$		
$0 = v_i^2 + 2(-9,8)(7)$		
v _i = 11,71 m⋅s ⁻¹ √		(4)
3.4. $E_p = mgh\checkmark = (2)(9,8)(7) \checkmark = 137,2 J\checkmark$		(3)
3.5. 12 bricks in a minute – each brick takes	5 s √	
P = W/t ✓= 137,2/5 ✓= 27,44 W✓		(4)
QUESTION 4		

4.1 8m.s⁻¹ √√ (2)

PHYSICAL SCIENCES **GRADE 12** **SESSION 2** (LEARNER HOMEWORK SOLUTIONS)

4.2 Direction up is positive $v_f^2 = v_i^2 + 2a\Delta y$ $\checkmark (0)^2 = (8)^2 + 2(-9,8) \Delta y$ \checkmark $0 = 64 - 19,6 \Delta y$ $\Delta y = 3,27m$

(4)

4.3.1 When the ball lands in the gutter, the gutter exerts an upward force on the ball. The system is not isolated ~ any more. Work is done by the upward force and some of the mechanical energy of the ball is converted \checkmark into heat and sound. (2) 4.3.2 Energy is converted into other forms (like heat and sound) ✓ (1)

OR

4.4 $E_{mech at start} = mgh + \frac{1}{2}mv^2$ $= (0,01)(9,8)(0) + \frac{1}{2}(0,01)(8)^{2}$ = 0,32J $E_{mech at start} = mgh + \frac{1}{2}mv^2$ $= (0,01)(9,8)(0) + \frac{1}{2}(0,01)(7)^{2}$ = 0,245J $W_{\text{qutter}} = \Delta E_{\text{mech}} = E_{\text{end}} - E_{\text{start}}$ = 0,245 - 0,32= -0,075J

$$E_{mech at max height} = mgh + \frac{1}{2}mv^{2} \checkmark$$

= (0,01)(9,8)(3,27) + $\frac{1}{2}$ (0,01)(0)²
= 0,32J
$$E_{mech in gutter} = mgh + \frac{1}{2}mv^{2} \checkmark$$

= (0,01)(9,8)(2,5) + $\frac{1}{2}$ (0,01)(0)²
= 0,245J
$$W_{gutter} = \Delta E_{mech} = E_{gutter} - E_{max height}$$

= 0,245 -0,32 = -0,075J

(5)

- Both Axes correctly labelled
- Intercepts on axes correct 1
- No graph up to 1,22s
- Constant line between 1,22s and 1,75s
- Curve with negative gradient from 1,75s to 2,43s

(4)

[18]

(5)

5.1

W_{net} = ∆K ✓

 $W_f + W_N + W_{Fa} = \Delta K$

 $-60 = \frac{1}{2}(3)v_f^2 - 73,5$ $v_f = 3 \text{ m} \cdot \text{s}^{-1} \checkmark$

 $f\Delta x \cos \theta + 0 + 0 = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 \checkmark$

 $(30)(2)(\cos 180^\circ) \checkmark = \frac{1}{2}(3)v_f^2 - \frac{1}{2}(3)(7)^2 \checkmark$

4.5

y

GAUTENG DEPARTMENT OF EDUCATION	SENIOR SE	CONDARY INTERVENTION PRO	OGRAMME
PHYSICAL SCIENCES GRADE 12	SESSION 2	(LEARNER HOMEWORK SC	DLUTIONS)
5.2			
F _{N =} normal force W _{II} =parallel component of weight W⊥= perpendicular component of weight			
W _{II} F _N			
		3 forces correctly drawn I 3 forces correctly labelled	(2)
5.3 $W_{net} = \Delta K$			
$W_{WII} + W_N + W_\perp = \Delta K$			
$W_{II} \Delta x \cos \theta + 0 + 0 = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2$	/		
mgsin20° Δxcos180°✓ = 0 - ½(3)(3	3) ² ✓		
(3)(9,8) sin20° d (-1) \checkmark = 0 - $\frac{1}{2}$ (3)(3)	2		
d = 1,34 m ✓			(5) [12]
QUESTION 6:			
6.1 $E_p = mgh \ddot{u} = (88)(9,8)(7) \ddot{u} = 6036,8$	3 Jü		(3)
6.2. W = FΔx·cosα ü= (108)(7) ü= 756	3 Jü		(3)
6.3. $v_f^2 = v_i^2 + 2g\Delta x\ddot{u}$ $0 \ddot{u} = v_i^2 + 2(-9,8)(7) \ddot{u}$ $v_i = 11,71 \text{ m} \cdot \text{s}^{-1}\ddot{u}$			(4)
6.4. E _p = mghü = (2)(9,8)(7) ü= 137,2	Jü		(3)
6.5. 12 bricks in a minute – each brick P = W/t ü= 137,2/5 ü= 27,44 Wü	takes 5 sü		(4)

GAUTENG DEPARTMEN	IT OF EDUCATION	SENIOR SE	CONDARY INTERVENTION PROGRAMME	
PHYSICAL SCIENCES	GRADE 12	SESSION 3	(LEARNER HOMEWORK SOLUTIONS)	
TOPIC 1: PHOTOEL	ECTRIC EFFECT			
SOLUTIONS TO HO	MEWORK			
QUESTION 1				
1.1 Minimum ener	rgy needed to eject	electrons from a	a certain material/metal. \checkmark	
	$E = hc/\lambda \checkmark$	0040 ⁻³⁴ \ (04	(2)	
	∴ 6,9 x 10 ⁻¹⁹ ✓ = (6 = 288,26 x 10 ⁻⁹ m √	, ,	(4)	
1.3 E	$k = \frac{hc}{\lambda} - W \checkmark$ $= \frac{(6,63 \times 10^{-34})(3)}{260 \times 10^{-9}}$	<u>x10⁸)</u>	I 0 ⁻¹⁹ ✓	
	= 7,65 x 10 ⁻¹⁹ − 6 = 7,5 x 10 ⁻²⁰ J√	,9 X 10	(4)	
1.4 The positively of them from bein	charged zinc plate v g emitted. ✓	vill attract electro	ons √preventing (2) [12]	
QUESTION 2				
2.1 Photo-electric effect \checkmark (1)				
2.2 $c = f\lambda \checkmark$ $\therefore 3 \times 10^8 = f(200 \times 10^{-9}) \checkmark$ $\therefore f = 1.5 \times 10^{15} Hz$				
$f_{0} = W_{0}/h \checkmark$ = $\frac{7.57 \times 10^{-19}}{6.63 \times 10^{-34}} \checkmark = 1.14 \times 10^{15} \text{ Hz} \checkmark$				

 $6,63 \times 10^{-54} \checkmark = 1,14 \times 10^{15} \text{ Hz} \checkmark$ Frequency (1,5 x 10¹⁵ Hz) greater than threshold frequency (1,14 x10¹⁵ Hz) \checkmark (6)

- 2.3.1 The energy of the photo-electrons remains unchanged ✓ as the frequency / wavelength of the photons did not change. ✓ (2)
- 2.3.2 Number of photo-electrons (per second) is increased ✓. When the intensity is increased the number of photons will increase, releasing an increased number of electrons. ✓

(2) **[10]**

GAUTENG DEPARTMENT OF EDUCATION		SENIOR SE	CONDARY INTERVENTION PROGRAMME
PHYSICAL SCIENCES	GRADE 12	SESSION 3	(LEARNER HOMEWORK SOLUTIONS)

TOPIC 2: ELECTROMAGNETIC RADIATION AND SPECTRA

SOLUTIONS TO HOMEWORK

QUESTION 1

Emission lines are evidence of light (energy) being given off \checkmark as electrons fall through energy levels \checkmark . Absorption spectra lines are evidence of certain frequencies of energy being taken in \checkmark by the atom as the electrons go to higher energy levels. \checkmark Since the energy levels of a particular element have the same energy level spacings \checkmark , the energy emitted (shown as a colour) will correspond exactly with the energy absorbed (shown by a black line) \checkmark [6]

QUESTION 2

 $E = hf \checkmark$ 1,89 x 10⁻²⁴ $\checkmark = (6,6 x 10^{-34}) \checkmark f$ f = 2,9 x 10⁹ Hz \checkmark

This frequency corresponds to the radio wave region of the electromagnetic spectrum. \checkmark

[5]

QUESTION 3

3.1 v = λf√

 $3 \times 10^8 \checkmark = \lambda (405 \times 10^6) \checkmark$

- $\lambda = 0.74 \mathrm{m}\checkmark$
- 3.2 radio√

3.3
$$E = hf \checkmark = (6,6 \times 10^{-34}) \checkmark (405 \times 10^{6}) \checkmark$$

= 2,67 x 10⁻²⁵ J\sqcap (4)

(1)

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME

PHYSICAL SCIENCES GRADE 12 SESSION 4 (LEARNER HOMEWORK SOLUTIONS)

TOPIC 1: ORGANIC MOLECULES: STRUCTURES AND PHYSICAL PROPERTIES

SOLUTIONS TO HOMEWORK

QUESTION 1

1.1 Compounds that have the same molecular formula but different structural formulae. $\checkmark\checkmark$

(2)

methylmethanoate ✓ metielmetanoaat

ethanoic acid ✓ etanoësuur

(6)

- 1.3.1 Ethanoic acid. ✓ The hydrogen bonds/intermolecular forces between ethanoic acid molecules are stronger than the Van der Waals forces/intermolecular forces between the ester molecules ✓
 More energy needed to break bonds between ethanoic acidmolecules. (3)
- 1.3.2 Methylmethanoate ✓ The Van der Waals forces/intermolecular forces between the ester molecules are weaker than the hydrogen bonds/intermolecular forces between ethanoic acid molecules. ✓
 Less energy needed to break bonds between the ester molecules. (3)
- 1.4 Decrease ✓ Van der Waals forces increase with molecular size ✓(3)[17]

GAUTENG DEPARTMENT OF EDUCATION SEN			SENIOR SEC	ONDARY INTERVENTION PROG	RAMME
PHYSICAL SCIENCES GRADE 12		SESSION 4	(LEARNER HOMEWORK SOL	UTIONS)	
ΤΟΡΙ	C 2: ORGANIC MOLECU	JLES: REAC	TIONS		
QUES	STION 1				
1.1 1.2	Dichlorodifluoromethane Low boiling point ✓ OR High volatility/high vapo		/		(2) (1)
1.3.1	Damages the ozone lay			,	(1)
1.3.2	Increase in (dangerous) Higher occurrence of sk	-		✓	(2)
1.4			/		(-)
	$(CH_3CH_3 + C\ell_2) \rightarrow (CH_3)$	CH₂Cł + HCł	bal 🗸		(3)
1.5	Heat ✓ OR Ultraviolet light OR				
1.6	Sunlight CH ₃ CH ₃ CH ₃ CH ₄ √√				(1) (2)
1.7	No harm to the ozone la	ver ✓			(2)
	Less potent greenhouse	-	ibutes less to g	lobal warming ✓	(2) [14]
QUES	STION 2				
2.1	Elimination√				(1)
2.2	Alkenes ✓				(1)
2.3	Addition/hydrohalogena	tion/hydrobro	omination 🗸		(1)
2.4	CH ₃ CH ₂ CH(OH)CH ₃ ✓−	→ CH ₃ CHCH	$CH_3 \checkmark \checkmark + H_2O$	\checkmark	(4)
2.5	Q✓				
	The major product is the substituted C-atom (the			s removed from the least ber of hydrogen atoms√	(2)
2.6	$CH_3CH_2CHBrCH_3 \checkmark \checkmark$ 2-bromobutane \checkmark	No hyphei	n in the name:	-1 mark	(3)
2.7	Substitution √	L			(1) [13]

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION I	PROGRAMME			
PHYSICAL SCIENCES GRADE 12 SESSION 5 (LEARNER HOMEWORK	SOLUTIONS)			
TOPIC: CONSOLIDATION EXERCISES				
SOLUTIONS TO SECTION A				
QUESTION 1				
1.1 $p_{before} = p_{after}$				
$m_1v_{i1} + m_2v_{i2} = (m_1 + m_2) v_f \checkmark$				
$(3000 \times 27,28) \checkmark + 500 \times 0 \checkmark = (3000 + 500) v_{f}$				
$v_f = 23,81 \text{ m} \cdot \text{s}^{-1} \checkmark$	(5)			
1.2 $\Delta p = m(v_f - v_i) \checkmark$				
= 3000 (23,81 - 27,78) ✓				
$= -11 910 \text{ kg} \cdot \text{m} \cdot \text{s}^{-1}$				
= 11 910 kg·m·s ⁻¹ in the opposite direction of the motion \checkmark	(3)			
1.3 Drivers are distracted when using a cell phone while driving. This can lead	to			
accidents which can result in injury and death. $\checkmark\checkmark$	(2) [10]			
QUESTION 2				
2.1 The frequency is \checkmark inversely proportional \checkmark to the wavelength.	(2)			
2.2 $c = f\lambda \checkmark$				
$3 \times 10^8 = (6,67 \times 10^{14}) \lambda$				
$\lambda = 4.5 \times 10^{-7} \text{ m} \checkmark \text{UNITS}$	(2)			
2.3 (a) At hospital for X-rays/ cancer treatment \checkmark				
(b) A radio/ TV/ radar ✓				
(c) Infra red at the physiotherapist/ night vision/ stealth/ heater/ stove \checkmark	(3)			
2.4 (a) $E = h f \checkmark$	(1)			
(b) The energy associated with this frequency is very high \checkmark and is dangerous	1			
to all living matter. √damage	(2)			
(c) Gamma ✓	(1)			
(d) Hiroshima / Nagasaki ✓/ Japan in the 2nd World War. ✓	(2)			
	[13]			

PHYSICAL SCIENCES GRADE 12

SESSION 5 (LEARNER HOMEWORK SOLUTIONS)

QUESTION 3

3.1 For complete motion of stone Upward motion negative

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark \therefore 88 \checkmark = v_i(6) \checkmark + \frac{1}{2} (9,8)(6)^2 \checkmark$$

$$v_i = -14,7 \text{ m} \cdot \text{s}^{-1} \therefore 14,7 \text{ m} \cdot \text{s}^{-1} \text{ upwards } \checkmark$$

$$v_{\text{balloon}} = v_{\text{stone}} \checkmark = 14,7 \text{ m} \cdot \text{s}^{-1}$$

3.2

Upward motion as negative:

Downward motion as negative:

	IVIAINS	1
Graph is a straight line that intercepts x-axis at 1,5 s	✓	
Maximum velocity after 6 s	✓	
Initial velocity indicated as 14,7 m·s ⁻¹	✓	
		(3)
		[9]

QUESTION 4

4.1 Ep = mgh√

=4x9,8√x0,2√ =7,84J√

(4)

(6)

SENIOR SECONDARY INTERVENTION PROGRAMME

PHYSICAL SCIENCES **GRADE 12** SESSION 5 (LEARNER HOMEWORK SOLUTIONS) 4.2 By conservation of Mechanical E Mechanical E top = Mechanical E bottom $[mgh + \frac{1}{2}mv^{2}]_{top} = [mgh + \frac{1}{2}mv^{2}]_{bottom} \checkmark$ $4 \times 9.8 \times 0.2 \checkmark + \frac{1}{2} \times 4 \times 0^2 \checkmark = \frac{1}{2} \times 4 \times v^2 \checkmark + 4 \times 9.8 \times 0 \checkmark$ $7.84 = 2v^2$ $v=1,97 \text{ ms}^{-1}$ to the right \checkmark (6) The total linear momentum of an isolated system ✓ remains constant ✓ in both 4.3 magnitude and direction. ✓ (3) 4.4 $p_{before} = p_{after} \checkmark$ $m_1v_{i1} + m_2v_{i2} = (m_1 + m_2)v_f$ $(0,1)(v_{i1}) \checkmark + (3,9)(0) \checkmark = (0,1+3,9)(1,97)\checkmark$ $0,1 v_{i1} = 7,88$ $v_f = 78.8 \text{ m} \cdot \text{s}^{-1}$ to the right \checkmark (5) E_k = F·xcos⊖√ 4.5

 $\frac{1}{2}$ mv² \checkmark = F x 0.1 \checkmark cos 0° \checkmark

 $\frac{1}{2}(0,1)(78,8)^2 \checkmark = F \times (0,1)$

F= 3104,72N in direction of arrow ✓ (6)

[24]

PHYSICAL SCIENCES **GRADE 12 SESSION 6** (LEARNER HOMEWORK SOLUTIONS)

TOPIC 1 : SOUND AND DOPPLER EFFECT

SOLUTIONS TO HOMEWORK

QUESTION 1

1.1
$$v = f\lambda$$

340 = 500 x $\lambda \checkmark$
 $\lambda = 0.68 m\checkmark$
(2)

- If the pitch is higher, then it is moving towards you. ✓ If the pitch is lower, it is 1.2 moving away from you. ✓ (2)
- Doppler effect ✓ (1) 1.3

1.4
$$f_L = \left(\frac{v \pm v_L}{v \pm v_s}\right) f_s = \left(\frac{340}{340 + v_s}\right) 500 = 495 \checkmark$$

$$v_s = 343 \text{ m} \cdot \text{s}^{-1}$$
 away from observer \checkmark

QUESTION 2

- 2.1 Diagram shows waves compressed in front and stretched out at back $\checkmark\checkmark$ (2)
- 2.2 Formula One car goes much faster v and results in greater compressions VOR The engine **revs are higher** \checkmark making the vibrations take place with greater frequency (2)

2.3
$$f_L = \left(\frac{v \pm v_L}{v \pm v_s}\right) f_s = \left(\frac{340}{340 - 55.56}\right) 250 = 298,83 \, Hz$$

✓ formula

✓ substitutions

 \checkmark convert km·h⁻¹ to m·s⁻¹

✓ answer

(4)

(5) [10]

[8]

SENIOR SECONDARY INTERVENTION PROGRAMME

PHYSICAL SCIENCES GRADE 12 SESSION 6 (LEARNER HOMEWORK SOLUTIONS)

TOPIC 2: LIGHT, ELECTROMAGNETIC WAVES, 2D AND 3D WAVEFRONTS

SOLUTIONS TO HOMEWORK

QUESTION 1

- 1.1 <u>A broad central band of bright red</u> light flanked by <u>alternating narrower black and</u> not so bright red bands ✓✓ (2)
- All the bands will have equal width ✓ and All the bands will be equally bright ✓

1.3

$$\sin \theta = \frac{m\lambda}{d} = \frac{1(700 \times 10^{-9})}{5 \times 10^{-6}} = 0.14$$

$$\theta = 8.05^{\circ}$$

$$\frac{1}{2} \text{ width} \qquad \frac{1}{2} \text{ width}$$

$$\forall \tan 8.05^\circ = \frac{\frac{1}{2} \text{ width}}{\text{distance}} = \frac{\frac{1}{2} \text{ width}}{2} \checkmark$$

width = 0.028 × 2 = 0.056 m

 \checkmark

QUESTION 2

$$\sin \theta = \frac{m\lambda}{d} \checkmark$$

$$\sin 8^{0} = \frac{1.\lambda}{4,59 \times 10^{-6}} \checkmark$$

$$\lambda = \sin 8^{0}.4,59 \times 10^{-6}$$

$$= 6,38804 \times 10^{-7} \text{ m} \checkmark$$

$$= 638,80 \text{ m} \checkmark$$

1	ิค	۱
l	U)

(2)

(6)

PHYSICAL SCIENCES

GRADE 12

SESSION 6 (LEARNER HOMEWORK SOLUTIONS)

Distance MN = $2 \times MO \sqrt{\sqrt{\sqrt{1}}}$

$$\tan \theta = \frac{MN}{d} \checkmark$$
$$\tan 8^0 = \frac{MN}{2} \checkmark$$

$$= 0,28 \times 2 = 0,56m$$
 (6) [12]

PHYSICAL SCIENCES GRADE 12 SESSION 7 (LEARNER HOMEWORK SOLUTIONS)

TOPIC 1: ENERGY CHANGES & RATES OF REACTION

SOLUTIONS TO HOMEWORK

QUESTION 1

1.1.	Heat of reaction - is the difference between the energy of the products and the	
	energy of the reactants. $\sqrt{}$	(2)
1.2.	Endothermic reaction – a reaction that takes in energy, products have more	
	energy than the reactants $\sqrt{}$	(2)
1.3.	Activation energy - the 'energy hill' which must be 'overcome' by the addition of	
	this amount of energy before a reaction can take place. $\checkmark\checkmark$	(2)
		[6]

QUESTION 2

2.1.	Exothermic 🗸 🗸	(2)
2.2.	Endothermic 🗸 🗸	(2)
2.3.	Exothermic 🗸 🗸	(2)
		[6]

QUESTION 3

3.1.	The sun √√	(2)
3.2.	Flame 🗸 🗸	(2)
3.3.	Flame 🗸 🗸	(2)
		[6]

QUESTION 4

4.1.	X-axis – course of reaction ✓ Y-axis – potential energy ✓	(2)
4.2.	Eproducts < Ereactants $\sqrt{}$	(2)
4.3.	Activated complex - temporary, unstable, high-energy composition of atoms,	()
	which represents a transition state between reactants and the products. $\checkmark \checkmark$	(2)
4.4.	Negative ✓	(1)
4.5.	Exothermic ✓	(1)
		[8]

QUESTION 5

(2)

The relationship between the dependent and independent variables must be given.

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME					
PHYS	CAL SCIENCES	GRADE 12	SESSION 7	(LEARNER HOMEWORK SOLU	JTIONS)
5.2	Temperature √√	and concentration	$\sqrt{}$		(4)
5.3	Any mass bigger than 1,6 g will not influence the volume of the gas produced. $\checkmark \checkmark$ (2)				.́√(2)
5.4	160 cm ³ √√				(2) [10]
QUE	STION 6				
As the temperature increases \checkmark , the number of molecules with the minimum kinetic energy required for a reaction to occur, increases \checkmark . The molecules will be moving faster \checkmark , the number of effective collisions will increase \checkmark and thus the rate of the reaction will increase \checkmark . Thus, the sugar dissolves faster in hot water. [5]					
QUESTION 7					
7.1		•		\checkmark because the activation to form the reactants from	(2)
7.2	Carbon monoxid warming. ✓✓	e is toxic and can I	ead to atmosphe	eric pollution and global	(2)
7.3.1	It will lower the a	mount of CO produ	uced and this wi	Il lead to less CO poisoning.	√ √ (2) [6]

mindset

SCI-BONO

0

SENIOR SECONDARY INTERVENTION PROGRAMME

PHYSICAL SCIENCES GRADE 12 SESSION 7 (LEARNER HOMEWORK SOLUTIONS)

TOPIC 2: CHEMICAL EQUILIBRIUM

SOLUTIONS TO HOMEWORK

QUESTION 1

1.1 The forward reaction is exothermic. ✓Thus, lowering the temperature favours the forward, exothermic reaction and the ammonia will now have a higher yield. ✓ However, the rate of reaction will be lowered and this will lead to the ammonia production being unprofitable. ✓ (3)

	NH ₃	O ₂	NO	H ₂ O
Initial concentration (mol·dm ⁻³)	1	1	0	0
Change in concentration (mol·dm ⁻³)	0,25	0,3125	0,25	0,375
Equilibrium concentration (mol·dm ⁻³)	0,75√	0,6875√	0,25√	0,375√

$$K_{c} = \frac{[NO]^{4}[H_{2}O]^{6}}{[NH_{3}]^{4}[O_{2}]^{5}} \checkmark$$
$$= \frac{(0.25)^{4}(0.375)^{6}}{(0.75)^{4}(0.6875)^{5}} \checkmark$$
$$= 2.2 \times 10^{-4} \checkmark \checkmark$$

(9)

1.2.2 Low. ✓ The small equilibrium constant value indicates that the equilibrium lies towards the reactants side ✓ and that there are more reactant molecules in the reaction mixture at equilibrium, thus NO will have a low yield. ✓ (3)

[15]

SENIOR SECONDARY INTERVENTION PROGRAMME

PHYSICAL SCIENCES GRADE 12

SESSION 7 (LEARNER HOMEWORK SOLUTIONS)

QUESTION 2

	N ₂	O ₂	NO
Initial number of mole (mol)	7	2	0
Number of moles used/formed (mol)	0,2	0,2	0,4
Number of moles at equilibrium (mol)	6,8	1,8	0,4
Equilbrium concentration (mol·dm ⁻³) c = n/V	3,4√	0,9√	0,2√

$$K_{c} = \frac{[NO]^{2}}{[N_{2}][O_{2}]} \checkmark$$
$$= (0.2)^{2}$$

= 0,013 🗸

[6]

