SENIOR SECONDARY INTERVENTION PROGRAMME 2013

GRADE 12

MATHEMATICS

TEACHER NOTES

The SSIP is supported by

TABLE OF CONTENTS

TEACHER NOTES

SESSION	TOPIC	PAGE
1	Topic 1:Logarithms	3 – 13
	Topic 2: Factorisation of 3 rd degree polynomials	
2	Sequences & Series	14 – 25
3	Financial Maths	26 – 31
4	Financial Maths	32 – 39
5	Trigonometry Revision	40 – 47
6	Trigonometry	48 – 52
7	Trigonometry	53 – 59
8	Consolidation:	60 - 65
	Topic 1: Number patters, sequences and series,	
	Topic 2: Financial mathematics & Trigonometry	
9	Consolidation:	66 – 75
	Topic 1: Number patterns, sequences and series, Topic 2:	
	Financial mathematics	
10	Transformations	76 – 83
11	Functions and graphs	84 – 90
12	Inverse graphs	91 – 97
13	Calculus	98 – 111
14	Topic 1: Calculus Graphs	112 - 123
	Topic 2: Linear Programming	

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS

SESSION 1

GRADE 12

(TEACHER NOTES)

TOPIC 1: LOGARITHMS

Teacher Note: Changing from exponential to logarithmic form in real world problems is the most important concept in this section. This concept is particularly useful in Financial Maths when learners are required to solve for n.

LESSON OVERVIEW

1. Introduction session: 5 minutes

2.	Typical exam questions:		
	Question 1:	10 minutes	
	Question 2:	5 minutes	
	Question 3:	10 minutes	

3. Discussion of solutions: 30 minutes

SECTION A: TYPICAL EXAM QUESTIONS

QUESTION 1 (Used with permission from Maths Grade 12 Allcopy Mind Action Series textbook)

A colony of an endangered species originally numbering 1000 was predicted to have a population N after *t* years given by the equation $N = 1000(0,9)^{t}$.

(a)	Estimate the population after 1 year.	(2)
· · /		()

- (b) Estimate the population after 2 years.
- (c) After how many years will the population decrease to 200?

QUESTION 2

(DoE Nov 2008)

R1 570 is invested at 12% per annum. compound interest. After how many years will the investment be worth R23 000? [4]

QUESTION 3 (Link to inverse graphs)

Given: $g(x) = \left(\frac{1}{2}\right)^x$

- (a) Write the inverse of g in the form $g^{-1}(x) = \dots$ (2)
- (b) Sketch the graph of g^{-1} (2)
- (c) Determine graphically the values of x for which $\log_{\frac{1}{2}} x < 0$

(1) [5]

(2)

(5)

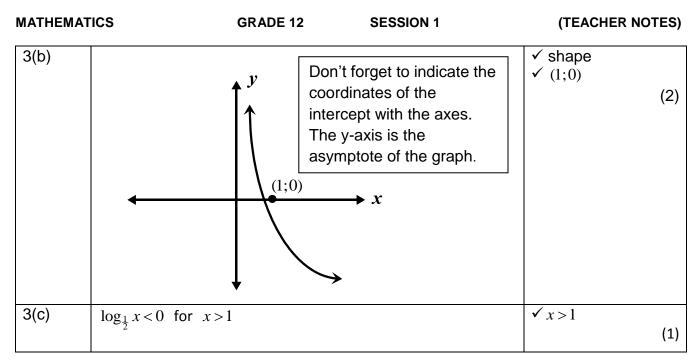
[9]

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS

GRADE 12

SESSION 1


(TEACHER NOTES)

SECTION B: SOLUTIONS AND HINTS TO SECTION A

1(a)	At $t=0$,				$\checkmark t = 0$
r(u)	$N = 50.2^0 = 50$ "supe	ar-buge"			\checkmark N = 50. 2 ⁰ = 50
	N = 50.2 = 50 Supe	a-buys			(2)
1(b)	At $t=5$,				
(0)	$N = 50.2^5 = 1600$ "su	ner-hua	s"		$\checkmark N = 50.2^5$ $\checkmark = 1600$
	11-30.2 -1000 50	per bug	5		• =1000 (2)
1(c)	Here N = 10 000				✓ 10 000 = 50. 2^t
	$N = 50.2^{t}$				$\checkmark 200 = 2^t$
	$\therefore 10\ 000 = 50.\ 2^t$				
					✓ $\log_2 200 = t$ ✓ $t = 7,64385619$
	$\therefore 200 = 2^t$				$\checkmark t \approx 8 \text{ days}$
	$\therefore \log_2 200 = t$				(5)
	$\therefore t = 7,64385619$				
•	$\therefore t \approx 8 \text{ days}$				
2	$\mathbf{A} = \mathbf{P}(1+i)^n$				 ✓ formula ✓ substitution
	$\therefore 23000 = 1570(1+0,12)$	$2)^n$			 ✓ substitution ✓ apply log function ✓ answer
	$\therefore \frac{23000}{1570} = (1,12)^n$		The 8 months was		
	1570		calculated by multiplying the decimal		(4)
	∴ 14, 64968153 = (1,	,12) ⁿ		l	
	$\therefore \log_{1,12} 14,64968153$	$\ldots = n$	0,68701789 by 12		
	∴ <i>n</i> = 23,68701789 ye	ears			
	$\therefore n = 23$ years 8 month	is			
3(a)	$(1)^x$				$(1)^{y}$
	$y = \left(\frac{1}{2}\right)$ Re	emembe	er that the inverse of a		$\checkmark x = \left(\frac{1}{2}\right)^y$
	$(1)^y$ gr		etermined by		
	$x = \left(\frac{1}{2}\right)^{y}$ interchanging x and y in the equation of the original graph				$\checkmark g^{-1}(x) = \log_{\frac{1}{2}} x$
	equation of the original graph. $\therefore \log_{\frac{1}{2}} x = y$ $\therefore g^{-1}(x) = \log_{\frac{1}{2}} x$			-	
				(2)	

SENIOR SECONDARY INTERVENTION PROGRAMME

SECTION C: HOMEWORK

QUESTION 1 (Used with permission from Maths Grade 12 Mind Action Series textbook) Archaeologists use a specific formula when determining the age of fossils. This formula is the carbon dating formula and is given by: $P = \left(\begin{array}{c} P \\ P \end{array} \right)$ where P is the percentage of carbon-14 remaining in the fossils after n years. Calculate the approximate age of a certain fossil discovered if the percentage of carbon-14 in the fossil is 12,5%. [4] **QUESTION 2** (Used with permission from Maths Grade 12 Mind Action Series textbook) (a) Determine how many years it would take for the value of a car to depreciate to 50% of its original value if the rate of depreciation, based on the reducing balance method, is 8% per annum. (3) (b) How long will it take for an amount of R50 000 to double if the interest rate is 18% per annum compounded monthly? (6) [9] **QUESTION 3** The graph of $f: x \rightarrow \log_a x$ passes through the point (16; 2). (a) Calculate the value of a. (3) Write down the equation of the inverse in the form $f^{-1}(x) = \dots$ (b) (2)

(c) Sketch the graphs of f and f^{-1} on the same set of axes. (4)

[9]

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS

GRADE 12

SESSION 1

(TEACHER NOTES)

SECTION D:	SOLUTIONS	TO HOMEWORK

1	$(1)^{\frac{n}{5700}}$	✓ 0,125
	$0,125 = \left(\frac{1}{2}\right)^{\frac{n}{5700}}$	✓ 0,125 = $(0,5)^{\frac{n}{5700}}$
	$\therefore 0,125 = (0,5)^{\frac{n}{5700}}$	✓ $\log_{0,5} 0,125 = \frac{n}{5700}$
	$\therefore \log_{0,5} 0,125 = \frac{n}{5700}$	\checkmark n=17100 years
	5700	[4]
	$\therefore 3 = \frac{n}{5700}$	
	$\therefore n = 17100 \text{ years}$	
2(a)	$0,5x = x(1-0,08)^n$	✓ correct
	$\therefore 0,5 = 0,92^n$	substitution into formula
	$\therefore \log_{0.92} 0, 5 = n$	✓ use of logs
	n = 8,312950414	✓ answer (2)
	8 years and 4 months	(3)
2(b)	A = P $\left(1 + \frac{i}{12}\right)^{12n}$ 100 000 = 50 000 $\left(1 + \frac{0.18}{12}\right)^{12n}$ $\therefore 2 = (1,015)^{12n}$ $\therefore \log_{1,015} 2 = 12n$ $\therefore 12n = 46,55552563$ $\therefore n = 3,879627136$ 3 years 11 months	✓ 12n ✓ $\frac{0,18}{12}$ ✓ $2 = (1,015)^{12n}$ ✓ $\log_{1,015} 2 = 12n$ ✓ $n = 3,879627136$ ✓ 3 years 11 months (6) [9]
3(a)	$\therefore 2 = \log_a 16$	✓ $2 = \log_a 16$
	$\therefore a^2 = 16$	$\checkmark a^2 = 16$
	$\therefore a = 4$	$\checkmark a = 4$ (2)
		(3)

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS		GRADE 12	SESSION 1	(TEACHER NOTES)
3(b)	$y = \log_4 x$ $\therefore x = \log_4 y$ $\therefore 4^x = y$ $\therefore f^{-1}(x) = 4^x$			$\checkmark x = \log_4 y$ $\checkmark f^{-1}(x) = 4^x$ (2)
3(c)		1 1	$(x) = 4^{x}$ $y = x$ $f(x) = \log_{4} x$ x	✓ Graph of $f(x)$ ✓ y-intercept of f ✓ Graph of $f^{-1}(x)$ ✓ x-intercept of f^{-1} (4)

Page 7 of 123

MATHEMATICS

GRADE 12

SESSION 1

(TEACHER NOTES)

TOPIC 2: FACTORISATION OF THIRD DEGREE POLYNOMIALS

Teacher Note: The factorisation of third degree polynomials is essential when sketching the graphs of cubic functions. The *x*-intercepts of a cubic graph can be determined by factorising cubic polynomials.

LESSON OVERVIEW

- Introduction session: 5 minutes
 Typical exam questions:
- Question 1:20 minutesQuestion 2:10 minutes3.Discussion of solutions:25 minutes

SECTION A: TYPICAL EXAM QUESTIONS

QUESTION 1

Solve the following equations:

(a)	$x^3 - x^2 - 22x + 40 = 0$	((4)

- (b) $x^3 + 9x^2 + 26x + 24 = 0$ (4)
- (c) $3x^3 7x^2 + 4 = 0$ (4)
- (d) $4x^3 19x 15 = 0$ (4)
- (e) $x^3 x^2 4x + 4 = 0$ (4)

[20]

Solve the following equations:

$x^3 - 27 = 0$		(4)
	$x^3 - 27 = 0$	$x^3 - 27 = 0$

(b) $x^3 + 27 = 0$ (4) [8]

ENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS

GRADE 12

SESSION 1

(TEACHER NOTES)

SECTION B: SOLUTIONS AND HINTS TO SECTION A

1(a)	$x^3 - x^2 - 22x + 40 = 0$	\checkmark (x-2)
	$\therefore (x-2)(x^2+x-20)=0$	$\checkmark (x^2 + x - 20)$
	$\therefore (x-2)(x+5)(x-4) = 0$	\checkmark $(x+5)(x-4)$
	$\therefore x = 2$ or $x = -5$ or $x = 4$	$\checkmark x = 2 \text{ or } x = -5 \text{ or } x = 4 \tag{4}$
1(b)	$x^3 + 9x^2 + 26x + 24 = 0$	\checkmark (x+3)
	$\therefore (x+3)(x^2+6x+8) = 0$	\checkmark (x ² +6x+8)
	$\therefore (x+3)(x+4)(x+2) = 0$	\checkmark $(x+4)(x+2)$
	$\therefore x = -3$ or $x = -4$ or $x = -2$	\checkmark x = -3 or x = -4 or x = -2
1(c)	$3x^3 - 7x^2 + 4 = 0$	(4)
1(0)	5.0 1.0 11 0	\checkmark $(x-1)$ \checkmark $(3x^2-4x-4)$
	$\therefore (x-1)(3x^2 - 4x - 4) = 0$	$\checkmark (3x - 4x - 4)$ $\checkmark (3x + 2)(x - 2)$
	$\therefore (x-1)(3x+2)(x-2) = 0$	
	$\therefore x = 1$ or $x = -\frac{2}{3}$ or $x = 2$	\checkmark x=1 or x= $-\frac{2}{3}$ or x=2
	3	(4)
1(d)	$4x^3 - 19x - 15 = 0$	\checkmark (x+1)
	$\therefore (x+1)(4x^2 - 4x - 15) = 0$	$\checkmark (4x^2 - 4x - 15)$
	$\therefore (x+1)(2x-5)(2x+3) = 0$	$\checkmark (2x-5)(2x+3)$
	$\therefore x = -1 \text{ or } x = \frac{5}{2} \text{ or } x = -\frac{3}{2}$	✓ $x = -1$ or $x = \frac{5}{2}$ or $x = -\frac{3}{2}$
	$x = -1$ or $x = -\frac{1}{2}$ or $x = -\frac{1}{2}$	
1(a)	2 2	(4)
1(e)	$x^3 - x^2 - 4x + 4 = 0$	\checkmark (x-1)
	$\therefore x^2(x-1) - 4(x-1) = 0$	$\checkmark (x^2 - 4)$ $\checkmark (x+2)(x-2)$
	$\therefore (x-1)(x^2-4) = 0$	$\checkmark (x+2)(x-2)$ $\checkmark x=1 \text{ or } x=-2 \text{ or } x=2$
	$\therefore (x-1)(x+2)(x-2) = 0$	$\begin{pmatrix} x & x - 1 & 0 & x - 2 & 0 & x - 2 \\ & & & (4) \end{pmatrix}$
	$\therefore x = 1$ or $x = -2$ or $x = 2$	
		[20]

GAUTENG DEPARTMENT OF EDUCATION S ENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMAT	ICS	GRADE 12	SESSION [·]	1 (TEACHER NOTES)
2(a)		+3x+9) = 0 $x^{2}+3x+9 = 0$ $x = \frac{-3 \pm \sqrt{(3)^{2}-4(1)(9)}}{2(1)}$ $x = \frac{-3 \pm \sqrt{-27}}{2}$ non-real solution		$(x-3)(x^2+3x+9) = 0$ $(x-3)(x^2+3x+9) = 0$ $(x=3)$
	OR $x^3 - 27 = 0$ $\therefore x^3 = 27$ $\therefore x = 3$			$4 \checkmark x^3 = 27$ $4 \checkmark x = 3$
2(b)	$x^{3} + 27 = 0$ $\therefore (x+3)(x^{2} - \frac{1}{2})(x^{2} - \frac{1}$	$(-3x+9) = 0$ $x^{2} - 3x + 9 = 0$ $x = \frac{-(-3) \pm \sqrt{(-3)^{2} - 40}}{2(1)}$ $x = \frac{3 \pm \sqrt{-27}}{2}$ non-real solution	<u>(1)(9)</u>	$(x+3)(x^2-3x+9) = 0$ $(x=-3)$ $x = \frac{3 \pm \sqrt{-27}}{2}$ $x = -3 \text{ is the only real solution}$ (4) (4)
				[8]

GAUTENG DEPARTMENT OF EDUCATION S		ENIOR SECONDARY INTERVE	NTION PROGRAMME
MATHEMATICS	GRADE 12	SESSION 1	(TEACHER NOTES)

SECTION C: HOMEWORK

QUESTION 1

Solve the following equations, rounded off to two decimal places where appropriate:

(a)	$x^3 - 6x^2 - x - 6 = 0$	(4)
(b)	$x^3 - 2x^2 + 16 = 0$	(5)
(c)	$2x^3 - 5x^2 - 4x + 3 = 0$	(4)
(d)	$-x^3 + 4x^2 - 2x - 4 = 0$	(6)
(e)	$x^3 - 5x^2 - 3x + 9 = 0$	(4) [23]

QUESTION 2

(a)	Determine the coordinates of the x-intercepts of the graph of	
	$f(x) = x^3 - 8x^2 + 19x - 12$	(6)

(b) Show that the graph of $f(x) = x^3 - x^2 - x - 2$ cuts the *x*-axis at one point only. (5) [11]

SECTION D: SOLUTIONS TO HOMEWORK

1(a)	$x^3 - 6x^2 - x - 6 = 0$	✓ (<i>x</i> −1)
	$∴ (x-1)(x^2 - 5x - 6) = 0$ ∴ (x-1)(x-6)(x+1) = 0	$\checkmark (x^2 - 5x - 6)$ $\checkmark (x - 6)(x + 1)$ $\checkmark x = \pm 1 \text{ or } x = 6$
	$\therefore x = \pm 1$ or $x = 6$	(4)

GAUTENG DEPARTMENT OF EDUCATION S ENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMAT	ICS GRADE 12	SESSION 1	(TEACHER NOTES)
1(b) 1(c)	$x^{3} - 2x^{2} + 16 = 0$ $\therefore (x+2)(x^{2} - 4x + 8) = 0$ $\therefore x = -2 \text{ or } x = \frac{-(-4) \pm \sqrt{-16}}{2}$ $x = \frac{4 \pm \sqrt{-16}}{2}$ non-real $2x^{3} - 5x^{2} - 4x + 3 = 0$ $\therefore (x+1)(2x^{2} - 7x + 3) = 0$ $\therefore (x+1)(2x - 1)(x - 3) = 0$ $\therefore x = -1 \text{ or } x = \frac{1}{2} \text{ or } x$	$ \frac{\sqrt{(-4)^2 - 4(1)(8)}}{2(1)} \qquad \checkmark $	$(x+2)$ $(x^{2}-4x+8)$ $x = -2$ $x = \frac{4 \pm \sqrt{-16}}{2}$ $x = -2 \text{ is the only real solution}$ (5) $(x+1)$ $(2x^{2}-7x+3)$ $(2x-1)(x-3)$ $x = -1 \text{ or } x = \frac{1}{2} \text{ or } x = 3$
1(d)	$\therefore x = -1 \text{ or } x = \frac{-}{2} \text{ or } x$ $-x^{3} + 4x^{2} - 2x - 4 = 0$ $\therefore x^{3} - 4x^{2} + 2x + 4 = 0$ $\therefore (x - 2)(x^{2} - 2x - 2) = 0$ $\therefore x = 2 \text{ or } x = \frac{-(-2) \pm \sqrt{2}}{2}$ $x = \frac{2 \pm \sqrt{12}}{2}$ $x = 2,73 \text{ or } x$	$ \frac{\sqrt{(-2)^2 - 4(1)(-2)}}{2(1)} \checkmark $	(x-2) (x ² -2x-2) x=2 (4)
1(e)	$x^{3} - 5x^{2} - 3x + 9 = 0$ $\therefore (x+1)(x^{2} - 6x + 9) = 0$ $\therefore (x+1)(x-3)^{2} = 0$ $\therefore x = -1 \text{ or } x = 3$	✓ ✓ ✓	
2(a)	$0 = x^{3} - 8x^{2} + 19x - 12$ $\therefore (x - 1)(x^{2} - 7x + 12) = 0$ $\therefore (x - 1)(x - 4)(x - 3) = 0$ $\therefore x = 1 \text{ or } x = 4 \text{ or } x = 3$ (1; 0) (4; 0) (3; 0)	* * *	$0 = x^{3} - 8x^{2} + 19x - 12$ (x-1) (x ² -7x+12) (x-4)(x-3) x=1 or x=4 or x=3 (1;0) (4;0) (3;0)

ENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMAT	ICS	GRADE 12	SESSION	1	(TEACHER NOTES)
2(b)	$0 = x^3 - x^2 - $	x-2		√	(x-2)
	$\therefore (x-2)(x^2 -$			√ √	(x-2) $(x2 + x + 1)$ $x = 2$
	$\therefore x = 2$ or	$x = \frac{-1 \pm \sqrt{(1)^2 - 2}}{2(1)}$	- 4(1)(1)	✓	$x = \frac{-1 \pm \sqrt{-3}}{2}$
		$x = \frac{-1 \pm \sqrt{-3}}{2}$		✓	x = 2 is the only <i>x</i> -intercept
		$x = \frac{1}{2}$			(5)
		non-real			
					[11]

Page 13 of 123

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS

SESSION 2

(TEACHER NOTES)

TOPIC 1: SEQUENCES AND SERIES

GRADE 12

Teacher Note: Sequences and series is an exciting part of the curriculum. Make sure the learners know the difference between arithmetic and geometric sequences. They must also know the relevant formulae for finding specific terms and the sum of a certain number of terms. The sum to infinity is an important concept, as well as real world applications of the formulae.

LESSON OVERVIEW

1.	Introduction session:	5 minutes

- Typical exam questions: Question 1: 10 minutes Question 2: 10 minutes Question 3: 10 minutes
 Discussion of colutional 25 minutes
- 3. Discussion of solutions: 25 minutes

SECTION A: TYPICAL EXAM QUESTIONS

QUESTION 1

(a).	Consider the sequence $-2;3;8;13;18;23;28;33;38;$ (1) Determine the 100 th term.	(2)
	(2) Determine the sum of the first 100 terms.	(2)
(b)	The 13 th and 7 th terms of an arithmetic sequence are 15 and 51 respectively. Which term of the sequence is equal to -21	(6) [10]

QUESTION 2

In a geometric sequence, the 6^{th} term is 243 and the 3^{rd} term is 72. Determine:

(a) the constant ratio.(b) the sum of the first 10 terms.

(4) [8]

(4)

GAUTENG DEPARTMENT OF EDUCATION		SENIOR SECONDARY INT	ERVENTION PROGRAMME
MATHEMATICS	GRADE 12	SESSION 2	(TEACHER NOTES)

QUESTION 3 (DoE Nov 2008 Paper 1)

Consider the sequence: $\frac{1}{2}$; 4; $\frac{1}{4}$; 7; $\frac{1}{8}$; 10; ...

- (a) If the pattern continues in the same way, write down the next TWO terms in the sequence. (2)
- (b) Calculate the sum of the first 50 terms of the sequence.

QUESTION 4

(a) Calculate the value of
$$\sum_{k=1}^{100} (2k-1)$$
 (4)

(b) Write the following series in sigma notation: 2+5+8+11+14+17 (4)

(c) Calculate the value of
$$\sum_{k=1}^{10} 5\left(\frac{1}{5}\right)^{k-1}$$
 (4)

(d) Calculate the value of *n* if
$$\sum_{k=1}^{n} 2^k = 2046$$
 (5)

(e) Calculate:
$$\sum_{k=1}^{\infty} 5\left(\frac{1}{5}\right)^{k-1}$$
 (5)

QUESTION 5

Given the geometric series: $8x^2 + 4x^3 + 2x^4 + ...$ (a) Determine the n^{th} term of the series. (3)

- (b) For what value(s) of x will the series converge? (2)
- (c) Calculate the sum of the series to infinity if $x = \frac{3}{2}$. (3) [8]

SECTION B: SOLUTIONS AND HINTS TO SECTION A

1(a)(1)	$\mathbf{T}_n = a + (n-1)d$	$\checkmark T_n = a + (n-1)d$	
	$\therefore T_{100} = -2 + (100 - 1)(5) = 493$	✓ $T_{100} = 493$	
			(2)

(7) [9]

[22]

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMAT	ICS	GRADE 12	SESSION 2	(TEACHER NOTES	S)
1(a)(2)	$S_n = \frac{n}{2} [2a + (n-1)]$ $\therefore S_{100} = \frac{100}{2} [2(-2)]$ $\therefore S_{100} = 24550$			✓ $S_n = \frac{n}{2} [2a + (n-1)d]$ ✓ $T_{100} = 493$ (2)	<u>2</u>)
1(b)	$T_{13} = 15$ $\therefore a + 12d = 15$ $\therefore a + 12d = 15 \dots a^{-1}$ $\therefore a + 6d = 51 \dots a^{-1}$ $\therefore 6d = -36$ $\therefore d = -6$ $\therefore a + 12(-6) = 15$ $\therefore a - 72 = 15$ $\therefore a - 72 = 15$ $\therefore a = 87$ $T_n = -21$ $\therefore a + (n-1)d = -2$ $\therefore 87 + (n-1)(-6) = 2$ $\therefore 87 - 6n + 6 = -2$ $\therefore n = 19$ $\therefore T_{19} = -21$	A B A-B	1 6 <i>d</i> = 51	✓ $a+12d = 15$ ✓ $a+6d = 51$ ✓ $d = -6$ ✓ $a = 87$ ✓ $87 + (n-1)(-6) = -21$ ✓ $n = 19$ (6)	\$)
L I	*			Γ <i>1</i> (~

[10]

$T_6 = 243$ AND $T_3 = 72$	$\checkmark a.r^5 = 243$
$a.r^5 = 243 \dots A$	$\checkmark a r^2 = 72$
$a.r^5 = 243 \dots A$	$\checkmark r^3 = \frac{27}{2}$
$a.r^2 = 72 \dots B$	8
$\therefore r^3 = \frac{27}{8} \dots \mathbf{A} \div \mathbf{B}$	$\checkmark r^3 = \frac{27}{8}$ $\checkmark r = \frac{3}{2}$
$\therefore r = \frac{3}{2}$	(4)
$\therefore a \left(\frac{3}{2}\right)^5 = 243$	✓ $a\left(\frac{3}{2}\right)^5 = 243$ ✓ $a = 32$
$\therefore a = 32$	\checkmark a=32
$32\left[\left(\frac{3}{2}\right)^{10}-1\right]$	✓ $S_{10} = \frac{32\left(\left(\frac{3}{2}\right)^{10} - 1\right)}{\frac{3}{2} - 1}$
$\therefore S_{10} = \frac{\left(\binom{2}{2}\right)}{\frac{3}{2} - 1} = 3626,5625$	√ answer (4)
	$a.r^{5} = 243 \dots A$ $a.r^{5} = 243 \dots A$ $a.r^{2} = 72 \dots B$ $\therefore r^{3} = \frac{27}{8} \dots A \div B$ $\therefore r = \frac{3}{2}$ $\therefore a\left(\frac{3}{2}\right)^{5} = 243$

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS

GRADE 12

SESSION 2

(TEACHER NOTES)

3(a)	$\frac{1}{16}$; 13	 ✓ ✓ answers 	(2)
3(b)	$S_{50} = 25 \text{ terms of } 1^{\text{st}} \text{ sequence } + 25 \text{ terms of } 2^{\text{nd}} \text{ sequence}$ $S_{50} = \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots \text{to } 25 \text{ terms}\right) + \left(4 + 7 + 10 + 13 + \dots \text{to } 25 \text{ terms}\right)$ $S_{50} = \frac{\frac{1}{2}\left(\left(\frac{1}{2}\right)^{25} - 1\right)}{\frac{1}{2} - 1} + \frac{25}{2}\left[2(4) + 24(3)\right]$ $S_{50} = 0,9999999\dots + 1000$ $S_{50} = 1001,00$	✓ separating into an arithmetic and geometric series ✓✓ $\frac{\frac{1}{2}\left(\left(\frac{1}{2}\right)^{2^{5}}-1\right)}{\frac{1}{2}-1}$ ✓ correct formulae ✓✓ $\frac{25}{2}[2(4)+24(3)]$ ✓ answer	(7)

[9]

4(a)	$\sum_{k=1}^{100} (2k-1) = [2(1)-1] + [2(2)-1] + [2(3)-1] + [2(4)-1] + \dots + [2(100)-1]$ = 1+3+5+7++199 We can use the formula $S_n = \frac{n}{2}[a+l]$ to calculate the sum: $S_{100} = \frac{100}{2}[1+199]$ $\therefore S_{100} = 10000$	 ✓ expanding ✓ correct formula ✓ substitution ✓ answer 	(4)
4(b)	The series is arithmetic. There are also 6 terms in the series. a=2 $d=3$ $n=6We can determine the general term as follows:T_n = a + (n-1)d\therefore T_n = 2 + (n-1)(3)\therefore T_n = 2 + 3n - 3\therefore T_n = 3n - 1We can now write the series in sigma notation as follows:\sum_{n=1}^{6} (3n-1)$	✓ correct formula ✓ $T_n = 3n - 1$ ✓ $n = 6$ ✓ $\sum_{n=1}^{6} (3n - 1)$	(4)
4(c)	$\sum_{k=1}^{10} 5\left(\frac{1}{5}\right)^{k-1} = 5\left(\frac{1}{5}\right)^0 + 5\left(\frac{1}{5}\right)^1 + 5\left(\frac{1}{5}\right)^2 + \dots + 5\left(\frac{1}{5}\right)^9$ $= 5\left(\frac{1}{5}\right)^0 + 5\left(\frac{1}{5}\right)^1 + 5\left(\frac{1}{5}\right)^2 + \dots + 5\left(\frac{1}{5}\right)^9$ $= 5 + 1 + \frac{1}{5} + \dots + \frac{1}{5^8}$	 ✓ expanding ✓ correct formula ✓ substitution ✓ answer 	(4)

MATHEM	ATICS GRADE 12 SESSION 2	(TEACHER NOTES)
	This is a geometric series with:	
	$a=5$ and $r=\frac{1}{5}$	
	$S_{10} = \frac{5\left[1 - \left(\frac{1}{5}\right)^{10}\right]}{1 - \frac{1}{5}} = \frac{25}{4}\left[1 - \left(\frac{1}{5}\right)^{10}\right] = 6,25$	
4(d)	$\sum_{k=1}^{n} 2^{k} = 2^{1} + 2^{2} + 2^{3} + \dots$	
	$= 2 + 4 + 8 + 16 + \dots$ This is a geometric series with: $a=2$ $r=2$ $S_n = 2046$	✓ expanding
	$S_n = \frac{a(r^n - 1)}{r - 1}$	✓ correct formula
	$\therefore 2046 = \frac{(2)(2^n - 1)}{2 - 1}$	✓ $2046 = \frac{(2)(2^n - 1)}{2 - 1}$
	$\therefore 2046 = (2)(2^n - 1)$	
	$\therefore 1023 = 2^n - 1$	
	$\therefore 1024 = 2^n$	
	$\therefore 2^{10} = 2^n$	$\begin{array}{c} \checkmark 1024 = 2^n \\ \checkmark n = 10 \end{array}$
	$\therefore n = 10$	$\checkmark n = 10 \tag{5}$
4(e)	$\sum_{k=1}^{\infty} 5\left(\frac{1}{5}\right)^{k-1} = 5\left(\frac{1}{5}\right)^{1-1} + 5\left(\frac{1}{5}\right)^{2-1} + 5\left(\frac{1}{5}\right)^{3-1} + \dots$	 ✓ expanding ✓ stating that -1 < r < 1 ✓ correct formula ✓ substitution
	$= 5\left(\frac{1}{5}\right)^{0} + 5\left(\frac{1}{5}\right)^{1} + 5\left(\frac{1}{5}\right)^{2} + \dots$	✓ answer (5)
	$=5+1+\frac{1}{5}+\dots$	
	The series is clearly geometric with the constant ration lying in the interval $-1 < r < 1$.	
	For this convergent geometric series $a = 5$ and $r = \frac{1}{5}$	
	$S_{\infty} = \frac{a}{1-r} = \frac{5}{1-\frac{1}{5}} = \frac{5}{\frac{4}{5}} = \frac{25}{4}$	
		[22]

[22]

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS		GRADE 12	SESSION 2	(TEACHER N	IOTES)
5(a)	$\mathbf{T}_n = (8x^3) \left(\frac{1}{2}x\right)^{n-1}$			✓ correct formula ✓ $a = 8x^3$ ✓ $r = \frac{1}{2}x$	(3)
5(b)	$-1 < \frac{x}{2} < 1$ $= -2 < x < 2$			$\checkmark -1 < \frac{x}{2} < 1$ $\checkmark -2 < x < 2$	(2)
5(c)	$S_{\infty} = \frac{a}{1-r}$ $S_{\infty} = \frac{8x^2}{1-\frac{x}{2}}$ $S_{\infty} = \frac{8\left(\frac{3}{2}\right)^2}{1-\frac{1}{2}\left(\frac{3}{2}\right)}$ $S_{\infty} = 72$			 ✓ correct formula ✓ substitution ✓ answer 	(3)
	$1 - \frac{1}{2} \left(\frac{1}{2} \right)$ $\therefore \mathbf{S}_{\infty} = 72$				[8]

SECTION C: HOMEWORK

QUESTION 1

The 19th term of an arithmetic sequence is 11, while the 31st term is 5.

(a)	Determine the first three terms of the sequence.	(5)
(b)	Which term of the sequence is equal to -29 ?	(3) [8]

QUESTION 2

Given: $\frac{1}{181} + \frac{2}{181} + \frac{3}{181} + \frac{4}{181} + \dots + \frac{180}{181}$

- (a) Calculate the sum of the given series.
- (b) Hence calculate the sum of the following series:

$$\left(\frac{1}{2}\right) + \left(\frac{1}{3} + \frac{2}{3}\right) + \left(\frac{1}{4} + \frac{2}{4} + \frac{3}{4}\right) + \dots + \left(\frac{1}{181} + \frac{2}{181} + \dots + \frac{180}{181}\right)$$
(4)

[8]

(4)

GAUTENG DEPARTMENT OF EDUCATION		EPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROG	RAMME	
MATHEMATICS		CS GRADE 12 SESSION 2 (TEACHER I	NOTES)	
QUESTION 3		3 (DoE Feb 2009 Paper 1)		
The	followin	ng is an arithmetic sequence: $1-p$; $2p-3$; $p+5$;		
(a) Calculate the value of <i>p</i> .		ulate the value of <i>p</i> .	(3)	
(b)	(b) Write down the value of:			
	(1) The first term of the sequence. (1			
	(2)	The common difference.	2)	
(c)	(c) Explain why none of the numbers in this arithmetic sequence are perfect squares. (2			

QUESTION 4

In a geometric sequence in which all terms are positive, the sixth term is $\sqrt{3}$ and the eighth term is $\sqrt{27}$. Determine the first term and constant ratio. [7]

QUESTION 5

(a) Determine *n* if
$$\sum_{r=1}^{n} (6r-1) = 456$$
 (7)

(b) Prove that
$$\sum_{k=3}^{n} (2k-1)n = n^3 - 4n$$
. (6)

QUESTION 6

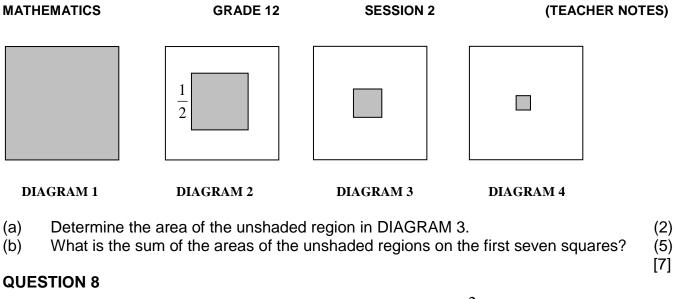
Consider the series $\sum_{n=1}^{\infty} 2(\frac{1}{2}x)^n$

(a) For which values of x will the series converge? (3) (b) If $x = \frac{1}{2}$, calculate the sum to infinity of this series. (3)

QUESTION 7

(DoE Feb 2009 Paper 1)

A sequence of squares, each having side 1, is drawn as shown on the following page. The first square is shaded, and the length of the side of each shaded square is half the length of the side of the shaded square in the previous diagram.



[8]

[13]

[6]

SENIOR SECONDARY INTERVENTION PROGRAMME

A plant grows 1,5 m in 1st year. Its growth each year thereafter is $\frac{2}{3}$ of its growth in the previous year. What is the greatest height it can reach?

SOLUTIONS TO HOMEWORK: SEQUENCES & SERIES (A)

1(a)	$T_{19} = a + 18d = 11$	✓ $T_{19} = a + 18d = 11$
	$T_{31} = a + 30d = 5$	✓ $T_{19} = a + 18d = 11$ ✓ $T_{31} = a + 30d = 5$
	$\therefore 12d = -6$	$\checkmark d = -\frac{1}{2}$
	$\therefore d = -\frac{1}{2}$	=
	$\therefore 20: 19-: 19$	✓ $a = 20$ ✓ sequence
	$\therefore a + 18(\frac{-1}{2}) = 11$	(5)
	$\therefore a = 20$	
1(b)	$20 + (n-1)\left(-\frac{1}{2}\right) = -29$	 ✓ Substitution into formula
	$\therefore (n-1)\left(-\frac{1}{2}\right) = -49$	✓ equating to -29 ✓ $n = 99$ (3)
	$\therefore n-1=98$	
	$\therefore n = 99$	
	$\therefore T_{99} = -29$	[8]

[3]

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS		GRADE 12	SESSION 2	(TEACHER NOTES)
2(a)	$\frac{1}{181} + \frac{2}{181} + \frac{3}{181} + \frac{3}$	n = 180		✓ correct <i>a</i> and <i>d</i> ✓ correct <i>n</i> ✓ S _n formula ✓ correct answer (4)
	(2) (3 3) (+90 [<i>a</i> =	$\left[\frac{\frac{1}{181} + \frac{2}{181} + \dots + \frac{180}{181}\right]$ $\frac{1}{2} d = \frac{1}{2} T_n = 90$ 8145	✓ simplifying fractions to get series ✓ $\frac{1}{2} + (n-1)\frac{1}{2} = 90$ ✓ $n = 180$ ✓ substitution into S _n formula to get 8145 (4)
μμ				[8]

3(a)	(2p-3)-(1-p)=(p+5)-(2p-3)	$\checkmark T_2 - T_1 = T_3 - T_2$
	2p - 3 - 1 + p = p + 5 - 2p + 3	✓ $2p-3-1+p=p+5-2p+3$
	3p - 4 = -p + 8	$\checkmark p = 3$
	4p = 12	(3)
	p = 3	
3(b)(1)	$T_1 = 1 - (3) = -2$	✓ answer
		(1)
3(b)(2)	$d = T_2 - T_1 = (2p - 3) - (1 - p)$	✓ $(2p-3)-(1-p)$
	$\therefore d = (2(3) - 3) - (1 - 3)$	$\checkmark p=3$
	$\therefore d = 3 - (-2)$	(2)
	$\therefore d = 5$	
3(c)	The sequence is -2;3;8;13;18;23;28;33;38;	✓ ✓ answer
	After the first term -2 , all the other terms end in either	(2)
	a 3 or an 8.	101
	Perfect squares never end in a 3 or an 8.	[8]
1		

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS GRADE 12 SESSION 2 (TEACHER NOTES)

4	$ar^5 = \sqrt{3}$	$\checkmark ar^5 = \sqrt{3}$
	$ar^7 = \sqrt{27}$	$\checkmark ar^7 = \sqrt{27}$
	$ar^7 \sqrt{27}$	✓ dividing
	$\therefore \frac{ar^7}{ar^5} = \frac{\sqrt{27}}{\sqrt{3}}$	$\checkmark r^2 = 3$
	2 _ 27	\checkmark $r = \sqrt{3}$
	$V = \sqrt{\frac{3}{3}}$	 ✓ correct working with surds
	$\therefore r^2 = \sqrt{9}$	$\checkmark a = \frac{1}{9}$
	$\therefore r^{2} = \sqrt{\frac{27}{3}}$ $\therefore r^{2} = \sqrt{9}$ $\therefore r^{2} = 3$	$\bullet a = -\frac{9}{9}$
	$\therefore r = \sqrt{3}$ (terms are positive)	
	$\therefore a(\sqrt{3})^5 = \sqrt{3}$	
	$\therefore a = \frac{\sqrt{3}}{(\sqrt{3})^5}$	
	$\therefore a = \frac{1}{(\sqrt{3})^4}$	
	$\therefore a = \frac{1}{(3^{\frac{1}{2}})^4}$ $\therefore a = \frac{1}{2}$	
	$\therefore a = \frac{1}{2}$	
	9	[7]

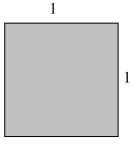
SOLUTIONS TO HOMEWORK: SEQUENCES & SERIES (B)

5(a)	$\sum_{n=1}^{n} (6r-1) = [6(1)-1] + [6(2)-1] + [6(3)-1] + \dots + [6(n)-1] = 456$	 ✓ expanding ✓ correct formula 	
	$=5+11+17+\dots+(6n-1)=456$	$\checkmark 456 = \frac{n}{2} \left(2a + (n-1)d \right)$	
	$S_n = \frac{n}{2} (2a + (n-1)d)$	✓ $0 = 3n^2 + 2n - 456$	
	$\therefore 456 = \frac{n}{2} \left(2a + (n-1)d \right)$	✓ $(3n+38)(n-12)=0$ ✓ $n=-\frac{38}{3}$ or $n=12$	
	$\therefore 456 = \frac{n}{2} (2(5) + (n-1)(6))$	$\checkmark :: n = 12$	
	$\therefore 456 = \frac{n}{2}(10 + 6n - 6)$		(7)
	$\therefore 456 = \frac{n}{2}(4+6n)$		
	$\therefore 456 = 2n + 3n^2$		
	$\therefore 0 = 3n^2 + 2n - 456$		

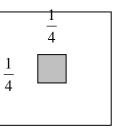
SENIOR SECONDARY INTERVENTION PROGRAMME

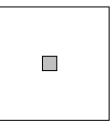
MATHEMATIC	CS GRADE 12 SESSIO	ON 2 (TEACHER NOTES)
	$\therefore (3n+38)(n-12) = 0$ $\therefore 3n = -38 \text{ or } n = 12$ $\therefore n = -\frac{38}{3} \text{ or } n = 12$ $\therefore n = 12$	
	$\sum_{k=3}^{n} [(2k-1)n] = 5n + 7n + 9n + \dots + [(2n-1)n]$ $\therefore a = 5n, d = 2n \text{ and number of terms} = n-2$ $\therefore S_{n-2} = \frac{n-2}{2} [2a + (n-2-1)d]$ $\therefore S_{n-2} = \frac{n-2}{2} [2(5n) + (n-3)(2n)]$ $\therefore S_{n-2} = \frac{n-2}{2} [10n + 2n^2 - 6n]$ $\therefore S_{n-2} = \frac{n-2}{2} [2n^2 + 4n]$	✓ expanding ✓ $a = 5n, d = 2n$ ✓ number of terms = $n-2$ ✓ correct formula ✓ substitution ✓ answer (6)
	$\therefore S_{n-2} = 2n(n-2) + n^2(n-2)$ $\therefore S_{n-2} = 2n^2 - 4n + n^3 - 2n^2 = n^3 - 4n$	[13]
	$\sum_{n=1}^{\infty} 2(\frac{1}{2}x)^{n}$ = $2(\frac{1}{2}x)^{1} + 2(\frac{1}{2}x)^{2} + 2(\frac{1}{2}x)^{3} + 2(\frac{1}{2}x)^{4} + \dots$ = $x + \frac{1}{2}x^{2} + \frac{1}{4}x^{3} + \frac{1}{8}x^{4} + \dots$ The series converges for: $-1 < \frac{1}{2}x < 1$ $\therefore -2 < x < 2$	$\checkmark r = \frac{1}{2}x$ $\checkmark -1 < \frac{1}{2}x < 1$ $\checkmark -2 < x < 2$ (3)
6(b)	$a = \frac{1}{2} \qquad r = \frac{1}{2} \left(\frac{1}{2}\right) = \frac{1}{4}$ $\therefore S_{\infty} = \frac{\frac{1}{2}}{1} = \frac{2}{3}$	✓ a and r ✓ S_{∞} formula ✓ $\frac{2}{3}$
	$\dots S_{\infty} = \frac{-1}{1 - \frac{1}{4}} = \frac{-1}{3}$	(3) [6]

SENIOR SECONDARY INTERVENTION PROGRAMME


MATHEMATICS

GRADE 12


SESSION 2


(TEACHER NOTES)

Question 7:

DIAGRAM	A 1 DIAGRAM 2 DIAGR	RAM 3 DIAGRAM 4	
7(a)	Area of unshaded square = Area of large square – Area of small shad = $(1)(1) - \left(\frac{1}{4}\right) \left(\frac{1}{4}\right)$ = $1 - \frac{1}{16} = \frac{15}{16}$	led square $\checkmark (1)(1) - \left(\frac{1}{4}\right) \left(\frac{1}{4}\right)$ $\checkmark \frac{15}{16}$ (2)	2)
7(b)	Sum of the unshaded areas of the first set squares: $= (1-1) + \left(1 - \frac{1}{4}\right) + \left(1 - \frac{1}{4^2}\right) + \dots + \left(1 - \frac{1}{4^6}\right)$ $= 7 - \left(1 + \frac{1}{4} + \frac{1}{4^2} + \dots + \frac{1}{4^6}\right)$ $= 7 - \left(\frac{1\left(1 - \left(\frac{1}{4}\right)^7\right)}{1 - \frac{1}{4}}\right)$ $= 7 - 1,333251953$ $= 5,67$	even ✓ ✓ Getting the pattern for the unshaded areas ✓ correct formula ✓ substitution ✓ answer (5	
8	$\therefore S_{\infty} = \frac{1,5}{(1,1)^2}$	✓ correct formula	1

$\therefore S_{\infty} = \frac{1,5}{1,(2)}$	↓	substitution
$1-\left(\frac{1}{3}\right)$	~	answer
\therefore S _{∞} = 4,5 m		
Thus the greatest height is 4,5 m		

[3]

GAUTENG DEPARTMENT OF EDU	JCATION	SENIOR SECONDARY IN	TERVENTION PROGRAMME
MATHEMATICS	GRADE 12	SESSION 3	(TEACHER NOTES)
FINANCIAL MATHEMATICS			
Teacher Note: This session value annuities . A future va value annuity is a loan. There is one in which a learner bo equal repayments with interes a large sum of money into interest over a given time per	lue annuity is a e are two types rrows money fro st. The second t the bank and t	savings plan for the fu of loans dealt with in th om a bank and has to type of loan is one in wh	uture, whereas a present is session: The first loan pay a certain number of nich the learner deposits
LESSON OVERVIEW			
 Review Homework from Introduction session: 	n Session 2	10 minutes 10 minutes	

Typical exam questions: Question 1: 15 minutes Question 2: 15 minutes Discussion of solutions: 35 minutes

5. Discussion of Homework 5 minutes

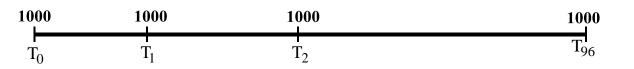
SECTION A: TYPICAL EXAM QUESTIONS

QUESTION 1 15 minutes

- Suppose that at the beginning of the month, R1000 is deposited into a bank. At the end of that month, a further R1000 is deposited and a further R1000 at the end of the next month. This continues for eight years. If the interest rate is 6% per annum compounded monthly, how much will have been saved after the eight year period?
- (b) Patrick decided to start saving money for a period of eight years starting on 31 December 2009. At the end of January 2010 (in one month's time), he deposited R2300 into the savings plan. Thereafter, he continued making deposits of R2300 at the end of each month for the planned eight year period. The interest rate remained fixed at 10% per annum compounded monthly. (4)
 - (1) How much will he have saved at the end of his eight year plan which started on the 31 December 2009?
 - (2) If Patrick leaves the accumulated amount in the bank for a further three months, what will the investment then be worth?

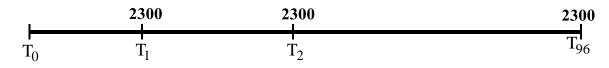
(4) [16]

(4)



GAUTENG DEPARTMENT OF EDUCATION		UCATION SE	NIOR SECONDARY INTERVE	NTION PROG	RAMME
MATH	EMATICS	GRADE 12	SESSION 3	(TEACHER	NOTES)
QUE	STION 2 15 minut	es			
(a)	means of monthly payr month after the grantin	ments of R4000 for a g of the loan. The ir	new car. He repays the loa a period of five years starti aterest rate is 24% per ann ase price of his new car.	ing one	(4)
(b)) Peter inherits R400 000 from his father. He invests the money at an interest rate of 12% per annum compounded monthly. He wishes to earn a monthly salary				
	from the investment for	a period of twenty	years starting in one mont	h's time.	
	How much will he receipt	ive each month?			(4)
					[8]

SECTION B: SOLUTIONS AND HINTS TO SECTION A


QUESTION 1

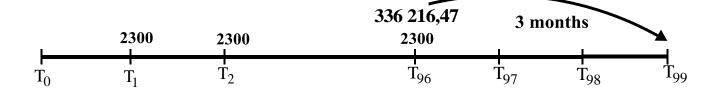
(a) Draw a timeline

(a)	$F = \frac{x \left[(1+i)^n - 1 \right]}{i}$ $\therefore F = \frac{1000 \left[\left(1 + \frac{0,06}{12} \right)^{97} - 1 \right]}{\frac{0,06}{12}}$ $\therefore F = R124 \ 442,68$	In this example, the duration of the loan is 8 years (96 months). However, the number of payments made is 97 because of the first payment being made immediately. This means that in the first month, two payments of R1000 were made.	✓ correct formula ✓ $n = 97$ ✓ $\frac{0,06}{12}$ ✓ answer (4)
-----	--	---	---

(b)(1) Draw a timeline

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS


GRADE 12

SESSION 3

(TEACHER NOTES)

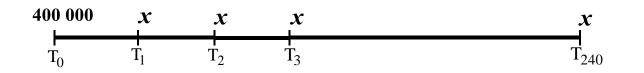
(b)(1)	$F = \frac{x \left[(1+i)^{n} - 1 \right]}{i}$ $\therefore F = \frac{2300 \left[\left(1 + \frac{0,10}{12} \right)^{96} - 1 \right]}{i}$	In this example, the duration of the loan is 8 years (96 months). However, the number of payments made is 96 because of the first payment being made	✓ correct formula ✓ $n = 96$ ✓ $\frac{0,10}{12}$ ✓ answer (4)
	$\therefore \mathbf{F} = \frac{\left[\begin{pmatrix} 12 \end{pmatrix} \right]}{\frac{0,10}{12}}$ $\therefore \mathbf{F} = \mathbf{R}336\ 216,47$	of the first payment being made one month after the start of the savings plan.	(4)

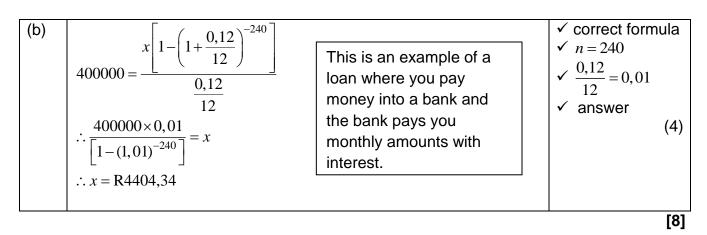
(b)(2) Draw a timeline

(b)(2)	A = P(1+ <i>i</i>) ^{<i>n</i>} \therefore A = 336 216,47 $\left(1 + \frac{0,10}{12}\right)^3$ \therefore A = R344 692,12	Since there will no longer be any further payments of R2300 into the annuity, all we now need to do is grow the R336 216,47 for three months using the formula $A = P(1+i)^n$ to calculate the future value of the investment after the further three months.	✓ correct formula ✓ $n = 3$ ✓ $P = 336 216,47$ ✓ answer (4)
			[16]

QUESTION 2

(a) Draw a timeline


] L	P gap	4000	4000	4000
T T	0	T ₁	T_2	T ₆₀



SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS **GRADE 12 SESSION 3** (TEACHER NOTES) ✓ correct formula (a) $\frac{x \left[1 - (1+i)^{-n}\right]}{x \left[1 - (1+i)^{-n}\right]}$ \checkmark n = 60 $\mathbf{P} = -$ There must always be a ✓ $\frac{0,24}{12} = 0,02$ gap between the loan (P) $4000 \left| 1 - \left(1 + \frac{0,24}{12}\right)^2 \right|$ and the first payment in ✓ answer order for the present (4) ∴ P = 0.24value formula to work. 12 $\therefore P = R139043.55$

(b) Draw a timeline

SECTION C: HOMEWORK

QUESTION 1

Mpho takes out a retirement annuity that will supplement his pension when he retires in thirty years' time. He estimates that he will need R2 500 000 in this retirement fund at that stage. The interest rate he earns is 9% per annum compounded monthly.

(a) Calculate his monthly payment into this fund if he starts paying immediately and makes his final payment in 30 years' time.
 (5)

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS

SESSION 3 (TEACHER NOTES)

(b) The retirement fund does not pay out the R2 500 000 million when Mpho retires. Instead he will be paid monthly amounts, for a period of twenty years, starting one month after his retirement. If the interest that he earns over this period is calculated at 7% per annum compounded monthly, determine the monthly payments he will receive.

[10]

QUESTION 2

Simphiwe takes out a twenty year loan of R100 000. She repays the loan by means of equal monthly payments starting **three months** after the granting of the loan. The interest rate is 18% per annum compounded monthly. Calculate the monthly payments.

[5]

SECTION D: SOLUTIONS TO SESSION 3 HOMEWORK: TOPIC 1: FINANCIAL MATHEMATICS A

QUESTION 1

(a)	$2\ 500\ 000 = \frac{x\left[(1,0075)^{361}-1\right]\right]}{0,0075}$ $\therefore \frac{2\ 500\ 000 \times 0,0075}{\left[(1,0075)^{361}-1\right]} = x$ $\therefore x = R1354,67$	✓ correct formula ✓ $n = 361$ ✓ $\frac{0,09}{12} = 0,0075$ ✓ $F = 2500000$ ✓ answer (5)
(b)	$2\ 500\ 000 = \frac{x\left[1 - \left(1 + \frac{0,07}{12}\right)^{-240}\right]}{\left(\frac{0,07}{12}\right)}$ $\therefore \frac{2\ 500\ 000 \times \left(\frac{0,07}{12}\right)}{\left[1 - \left(1 + \frac{0,07}{12}\right)^{-240}\right]} = x$ $\therefore x = R19\ 382,47$	✓ correct formula ✓ $n = 240$ ✓ $\frac{0,07}{12}$ ✓ P = 2 500 000 ✓ answer (5)

GAUTENG DEPARTMENT OF EDU	SENIOR SI	ECONDARY IN	TERVENTION PROGRAMME	
MATHEMATICS	GRADE 12	SE	ESSION 3	(TEACHER NOTES)
QUESTION 2				
$100\ 000$ $f_{100} \qquad gap$ $f_{100} \qquad T_{1} \qquad T_{2}$	$\begin{array}{ccc} x & x \\ \hline T_3 & T_4 \end{array}$	x T ₅	$\begin{array}{c} x \\ T_6 \end{array}$	$\begin{array}{c c} x & x \\ \hline T_{239} & T_{240} \end{array}$
(a) $\therefore 100\ 000(1,015)^2 = \frac{x[1]}{x}$ $\therefore 100\ 000(1,015)^2 \times 0,012$	$\frac{1 - (1,015)^{-238}}{0,015}$	-238		✓ correct formula ✓ $n = 238$ ✓ $\frac{0.18}{12} = 0,015$
$\therefore \frac{100\ 000(1,015)^2 \times 0,01}{\left[1 - (1,015)^{-238}\right]}$	E	́ _		✓ 100 000(1,015) ² ✓ answer
$\therefore x = \text{R1591,35}$				[5]

Page 31 of 123

GAUTENG DEPARTMEN	NT OF EDUCATION
-------------------	-----------------

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS

SESSION 4

(TEACHER NOTES)

FINANCIAL MATHEMATICS

Teacher Note: This session on Financial Mathematics will deal with **future and present value annuities**. A present value annuity is a savings plan for the future, whereas a present value annuity is a loan. There are two types of loans dealt with in this session: The first loan in one in which the learner borrows money from a bank and has to pay a certain number of equal repayments with interest. The second type of loan is one in which the learner deposits a large sum of money into the bank and the bank pays the learner equal amounts with interest over a given time period. In this lesson, learners will be required to work with logs to calculate the value of n. They will also deal with sinking funds.

GRADE 12

LESSON OVERVIEW

1.	Introduction session:	5 minutes
2.	Discuss Homework from Session 3	15 minutes
3.	Typical exam questions:	
	Question 1:	15 minutes
	Question 2:	20 minutes
4.	Discussion of solutions:	35 minutes

SECTION A: TYPICAL EXAM QUESTIONS

QUESTION 1

15 minutes

- (a) Anna wants to save R300 000 by paying monthly amounts of R4000, starting in one month's time, into a savings account paying 15% p.a. compounded monthly. How long will it take Anna to accumulate the R300 000?
- (b) Peter borrows R500 000 from a bank and repays the loan by means of monthly payments of R8000, starting one month after the granting of the loan. Interest is fixed at 18% per annum compounded monthly. How many payments of R8000 will be made?

QUESTION 2 (Sinking funds) 20 minutes

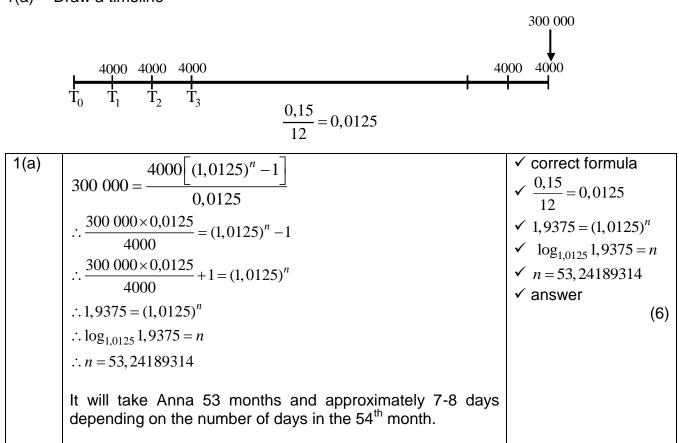
- (a) A farmer has just bought a new tractor for R800 000. He has decided to replace the tractor in 5 years' time, when its trade-in value will be R200 000. The replacement cost of the tractor is expected to increase by 8% per annum.
 - (1) The farmer wants to replace his present tractor with a new one in 5 years' time. The farmer wants to pay cash for the new tractor, after trading in his present tractor for R200 000. How much will he need to pay?

(6)

(6) [12]

(3)

MATHEMATICS	GRADE 12	SESSION 4	(TEACHER NOTES)
	GRADE 12	32331011 4	(TEACHER NOTES)

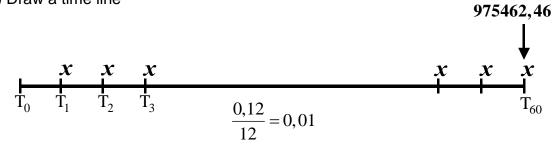

- (2) One month after purchasing his present tractor, the farmer deposited *x* rands into an account that pays interest at a rate of 12% p.a., compounded monthly. He continued to deposit the same amount at the end of each month for a total of 60 months. At the end of sixty months he has exactly the amount that is needed to purchase a new tractor, after he trades in his present tractor. Calculate the value of *x*.
- (b) Suppose that twelve months after the purchase of the present tractor and every twelve months thereafter, he withdraws R5 000 from his account, to pay for maintenance of the tractor. If he makes five such withdrawals, what will the new monthly deposit be?

(4) [13]

(6)

SECTION B: SOLUTIONS AND HINTS TO SECTION A

1(a) Draw a timeline



 \checkmark n = 23,69 years (3)

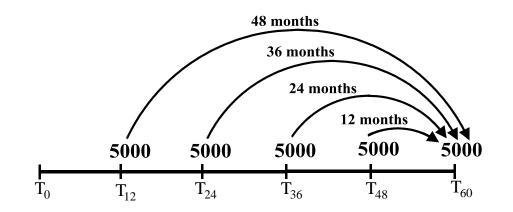
2(a) (2) Draw a time line

:.1175462,46 - 200 000

= R975462, 46

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS


GRADE 12

SESSION 4

(TEACHER NOTES)

2(a)(2)	$F = \frac{x[(1+i)^n - 1]}{x[(1+i)^n - 1]}$	✓ correct formula
	$F = \frac{i}{i}$	$\checkmark n = 60$
	$\therefore 975462, 46 = \frac{x[(1,01)^{60} - 1]}{0,01}$	✓ $\frac{0.12}{12} = 0.01$
	975462,46×0.01	✓ $F = 975462, 46$
	$\therefore \frac{975402,40\times0.01}{[1,01]^{60}-1} = x$	x = R 11944,00
	$\therefore x = \mathbf{R} \ 11944,00$	(6)

2(b) Draw a time line

2(b)	Services	✓ services
	$= [5000(1,01)^{48} + 5000(1,01)^{36} + 5000(1,01)^{24} + 5000(1,01)^{12} + 5000]$	✓ 975462, 46 + services
		$x[1,01]^{60}-1$
	= 32197,77	0,01
	975462, 46 + services = $x \frac{[1,01]^{60} - 1}{0,01}$	✓ $x = R12338, 24$
	0,01	(4)
	975462, 46 + 32197, 77 = 81, 66966986x	
	x = R12338, 24	
		[13]

GAUTENG DEPARTMENT OF EDUCATION		SENIOR SECONDARY INTERVENTION PROGRAMME		
MATHEMATICS	GRADE 12	SESSION 4	(TEACHER NOTES)	
SECTION C: HOMEWO	DRK			

QUESTION 1

Mark's small business, called Postal Emporium, purchases a photocopying machine for R200 000. The photocopy machine depreciates in value at 20% per annum on a reducing balance. Mark's business wants to buy a new machine in five years' time. A new machine will cost much more in the future and its cost will escalate at 16% per annum effective. The old machine will be sold at scrap value after five years. A sinking fund is set up immediately in order to save up for the new machine. The proceeds from the sale of the old machine will be used together with the sinking fund to buy the new machine. The small business will pay equal monthly amounts into the sinking fund, and the interest earned is 18% per annum compounded monthly. The first payment will be made immediately, and the last payment will be made at the end of the five year period.

Find the scrap value of the old machine.	(2)
	Find the scrap value of the old machine.

- (b) Find the cost of the new machine in five years' time. (2)
- (c) Find the amount required in the sinking fund in five years' time. (1)
- (d) Find the equal monthly payments made into the sinking fund. (4)
- (e) Suppose that the business decides to service the machine at the end of each year for the five year period. R3000 will be withdrawn from the sinking fund at the end of each year starting one year after the original machine was bought.
 - (1) Calculate the reduced value of the sinking fund at the end of the five year period due to these withdrawals. (3)
 - (2) Calculate the increased monthly payment into the sinking fund which will yield the original sinking fund amount as well as allow for withdrawals from the fund for the services.
 (5)

QUESTION 2

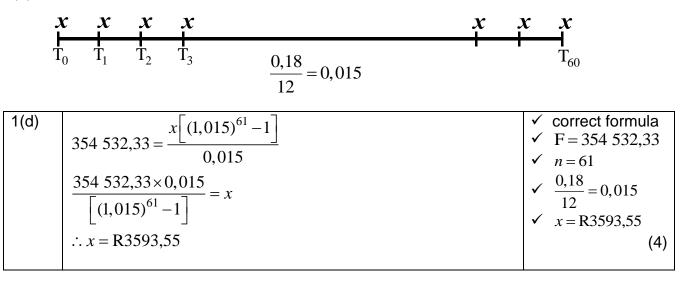
- (a) R2000 is immediately deposited into a savings account. Six months later and every six months thereafter, R2000 is deposited into the account. The interest rate is 16% p.a. compounded half-yearly. How long will it take to accumulate R100 000?
 - (b) How long will it take to repay a loan of R400 000 if the first quarterly payment of

R17000 is made three months after the granting of the loan and the interest rate

[17]

(7)

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME MATHEMATICS GRADE 12 SESSION 4 (TEACHER NOTES) is 16% per annum compounded quarterly? (6)


[13]

SECTION D: SOLUTIONS TO HOMEWORK: FINANCIAL MATHEMATICS

QUESTION 1

1(a)	A = $200\ 000(1-0,2)^5$ \therefore A = R65 536	 ✓ correct formula ✓ answer
1(b)	$A = 200 \ 000(1+0,16)^5$ $\therefore A = R420 \ 068,33$	(2) ✓ correct formula ✓ answer (2)
1(c)	Sinking fund=420 068,33-65 536 Sinking fund=354 532,33	✓ answer (1)

1(d) Draw a time line

MATHEMAT	ICS GRADE 12 SESSION 4	(TEACHER NOTES)
1(e) (1)	Draw a time line	
	48 months	
	36 months	
	24 months	
	12 months	
	3000 3000 3000 3000 300	DO
	T_0 T_{12} T_{24} T_{36} T_{48} T_6	0
1(e)(1)	Future value of the withdrawals: $3000 \left(1 + \frac{0.18}{12}\right)^{48} + 3000 \left(1 + \frac{0.18}{12}\right)^{36} + 3000 \left(1 + \frac{0.18}{12}\right)^{24} + 3000 \left(1 + \frac{0.18}{12}\right)^{12} + 3000 \left(1 + \frac{0.18}{12}\right)^{$	 ✓ services ✓ R22 133,22 ✓ reduced value (3)
	The reduced value of the sinking fund will be: R354 532,33-R22 133,22 = R332 399,11	
1(e)(2)	If we add R22 133,22 to the original sinking fund amount of R354 532,33, then it will be possible not only to receive the sinking fund amount of R354 532,33 at the end of the five year period, but also be able to make the service withdrawals at the end of each year for the five year period. $354 532,33 + 22 133,22 = \frac{x \left[(1,015)^{61} - 1 \right]}{0,015}$ $\therefore 376 665,55 = \frac{x \left[(1,015)^{61} - 1 \right]}{0,015} = x$	✓ correct formula ✓ F = 376 665,55 ✓ n = 61 ✓ $\frac{0,18}{12} = 0,015$ ✓ x = R3817,90 (5)
	$\therefore x = R3817,90$	[17]

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS		GRADE 12	SESSION 4	(TEACHER NOTES)
2(a)	$100\ 000 = \frac{2000}{100\ 000 \times 0.08}$ $\therefore \frac{100\ 000 \times 0.08}{2000}$ $\therefore \frac{100\ 000 \times 0.08}{2000}$ $\therefore 5 = (1,08)^{n+1}$ $\therefore \log_{1.08} 5 = n+1$			✓ correct formula ✓ $\frac{0,16}{2} = 0,08$ ✓ time period = n+1 ✓ $5 = (1,08)^{n+1}$ ✓ $\log_{1,08} 5 = n+1$ ✓ $n = 19,91237188$ ✓ $n \approx 10$ years
	$\therefore n = 19,9123714$ $\therefore n \approx 20 \text{ half-yea}$ $\therefore n \approx 10 \text{ years}$ (since there are 22)in a ten-year per	rs 20 half years		(7)
2(b)	$400\ 000 = \frac{17000 \left[1\right]}{0}$ $\therefore \frac{400\ 000 \times 0.04}{17000} =$ $\therefore (1,04)^{-n} = 1 - \frac{400}{1000}$			✓ correct formula ✓ $\frac{0,16}{4} = 0,04$ ✓ $0,0588 = (1,04)^{-n}$ ✓ $\log_{0,0625} 1,015 = -n$

17000	0,0388=(1,04)
$\therefore (1,04)^{-n} = 1 - \frac{400\ 000 \times 0.04}{17000}$	\checkmark
17000	$\log_{0.0625} 1,015 = -n$
$\therefore (1,04)^{-n} = 0,05882352941$	✓ $n = 72,23768046$
$\therefore 0,05882352941 = (1,04)^{-n}$	✓ answer
$\therefore \log_{1,04} 0,05882352941 = -n$	(6)
$\therefore n = 72,23768046$	
18 years 3 months	

[13]

Page 39 of 123

MATHEMATICS GRADE 12 SESSION 5 (TEACHER NOTES)

TRIGONOMETRY (REVISION)

SECTION A: TYPICAL EXAM QUESTIONS

QUESTION 1

- (a) If $2\tan\theta 3 = 0$, then determine by means of a diagram and without using a calculator, the value of $13\sin^2\theta - \frac{2}{3}\tan\theta$, if it is given that $180^\circ < \theta < 360^\circ$. (6)
- (b) (1) If $\sin 18^\circ = t$, use a diagram to determine the following in terms of *t*:

$$\frac{\cos^2 18^\circ . \tan^2 18^\circ}{\sin 18^\circ} \tag{6}$$

(2) By using identities, verify your answer. (3)

QUESTION 2

Simplify the following without using a calculator:

(a) $\sin 150^{\circ} .\cos 240^{\circ} .\tan 315^{\circ}$ (5)

(b)
$$\frac{\sin(180^\circ + \theta)}{\cos 360^\circ \cdot \cos(360^\circ - \theta)}$$
 (4)

(c)
$$\sin^2 130^\circ + \sin^2 320^\circ$$
 (4)

QUESTION 3

- (a) If $\tan A = p$, p > 0 and $A \in [0^{\circ}; 90^{\circ}]$ determine with the aid of a diagram the value of the following in terms of *p*.
 - $(1) \quad \sin A \tag{3}$

$$(2) \quad \cos A \tag{1}$$

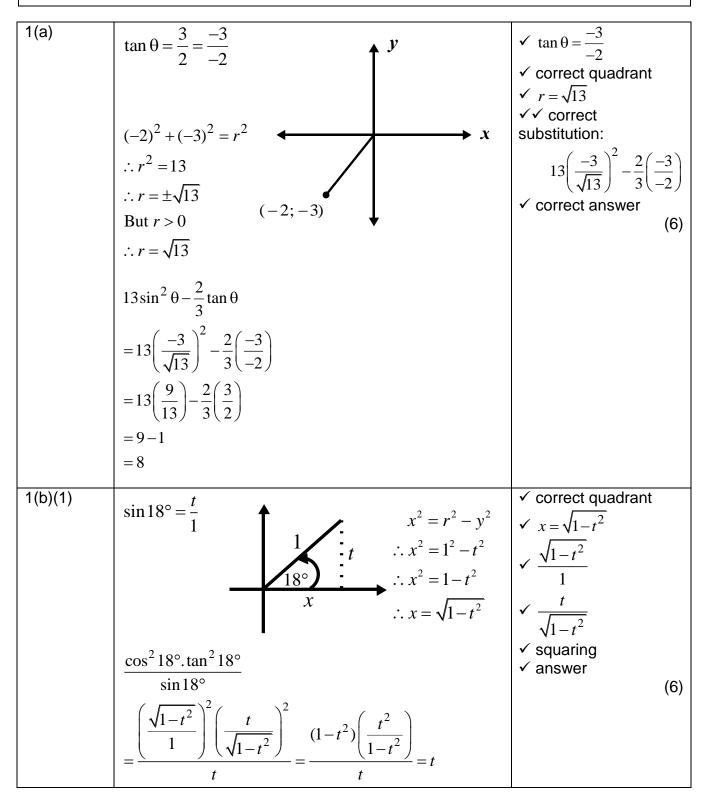
(b) Simplify the following without using a calculator:

(1)
$$\frac{\tan(-480^\circ).\sin 300^\circ.\cos 14^\circ.\sin(-135^\circ)}{\cos 1040^\circ.\cos 14^\circ.\sin(-135^\circ)}$$
(7)

$$\sin 104^\circ .\cos 225^\circ$$

(2)
$$\tan(90^\circ + x).\sin(-x - 180^\circ)$$
 (6)

MATHEMATICSGRADE 12SESSION 5(TEACHER NOTES)


QUESTION 4

Prove the following by using identities:

$$\frac{1+\sin\theta}{\cos\theta} + \frac{\cos\theta}{1+\sin\theta} = \frac{2}{\cos\theta}$$

(5)

SECTION B: SOLUTIONS AND HINTS

MATHEMATICS	GRADE 12	SESSION 5	(TEACHER NOTES)	
1(b)(2)	$\frac{\cos^2 18^\circ \cdot \tan^2 18^\circ}{\sin 18^\circ}$ $= \frac{\cos^2 18^\circ \cdot \frac{\sin^2 18^\circ}{\cos^2 18^\circ}}{\sin 18^\circ}$ $= \frac{\sin^2 18^\circ}{\sin 18^\circ}$ $= \sin 18^\circ$ $= t$		$\checkmark \frac{\sin^2 18^{\circ}}{\cos^2 18^{\circ}}$ $\checkmark \sin 18^{\circ}$ $\checkmark \text{ answer}$ (3)	3)
2(a)	$\frac{-i}{\sin 150^\circ \cdot \cos 240^\circ \cdot \tan 315^\circ}$ $= (\sin 30^\circ)(-\cos 60^\circ)(-\tan 43^\circ)$ $= \left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)(-1)$ $= \frac{1}{4}$	5°)	 ✓ sin 30° ✓ cos 360° = 1 ✓ - tan 45° ✓ evaluating special angles ✓ answer 	5)
2(b)	$\frac{\sin(180^\circ + \theta)}{\cos 360^\circ \cdot \cos(360^\circ - \theta)}$ $= \frac{-\sin \theta}{(1)(\cos \theta)}$ $= -\tan \theta$		$ \begin{array}{c} \checkmark -\sin\theta \\ \checkmark -\cos60^{\circ} \\ \checkmark \cos\theta \\ \checkmark -\tan\theta \end{array} $ (4)	4)
2(c)	$sin^{2} 130^{\circ} + sin^{2} 320^{\circ}$ = sin^{2} 50^{\circ} + sin^{2} 40^{\circ} = sin^{2} 50^{\circ} + cos^{2} 50^{\circ} = 1		$\checkmark \sin^2 50^\circ$ $\checkmark \sin^2 40^\circ$ $\checkmark \cos^2 50^\circ$ $\checkmark 1$ (4)	4)

MATHEMATICS

SESSION 5

3(a)(1)	. <i>D</i>	✓ correct quadrant
	$\tan A = \frac{p}{1}$ $r^{2} = x^{2} + y^{2}$ $r^{2} = 1^{2} + r^{2}$ (1; p)	-
	$r^2 = x^2 + y^2$ (1, <i>p</i>)	$\checkmark r = \sqrt{1 + p^2}$ $\checkmark \sin A = \frac{p}{\sqrt{p^2 + 1}}$
	$r^2 = 1^2 + p^2$	$\checkmark \sin A = \frac{p}{\sqrt{2}}$
	$r^2 = p^2 + 1$	
	-	(3)
	$r = \sqrt{p^2 + 1}$	
	$\sin A = \frac{p}{\sqrt{p^2 + 1}}$ $\cos A = \frac{1}{\sqrt{p^2 + 1}}$	
3(a)(2)		
	$\cos A = \frac{1}{\sqrt{r^2 + 1}}$	$\checkmark \cos A = \frac{1}{\sqrt{p^2 + 1}}$
	\sqrt{p} +1	(1)
3(b)(1)	tan(-480°).sin 300°.cos14°.sin(-135°)	\checkmark tan 60°
	sin 104°.cos 225°	$\checkmark -\sin 60^{\circ}$
	$(-\tan 480^\circ)(-\sin 60^\circ)(\cos 14^\circ)(-\sin 135^\circ)$	$\checkmark -\sin 45^{\circ}$
	$\frac{1}{(\sin 76^\circ)(-\cos 45^\circ)}$	$\checkmark \sin(90^\circ - 14^\circ) = \cos 14^\circ$
	$=\frac{(-\tan 120^{\circ})(-\sin 60^{\circ})(\cos 14^{\circ})(-\sin 45^{\circ})}{(-\sin 45^{\circ})(-\sin 45^{\circ})}$	$\checkmark -\cos 45^{\circ}$
	= (sin 76°)(-cos 45°)	 ✓ evaluating special angles
	$(-(-\tan 60^\circ))(-\sin 60^\circ)(\cos 14^\circ)(-\sin 45^\circ)$	✓answer
	$=\frac{(-(-\tan 60^\circ))(-\sin 60^\circ)(\cos 14^\circ)(-\sin 45^\circ)}{(\sin(90^\circ-14^\circ))(-\cos 45^\circ)}$	(7)
	$=\frac{(\tan 60^{\circ})(-\sin 60^{\circ})(\cos 14^{\circ})(-\sin 45^{\circ})}{(-\sin 45^{\circ})(-\sin 45^{\circ})}$	
	$= \frac{1}{(\cos 14^\circ)(-\cos 45^\circ)}$	
	$=\frac{\left(\sqrt{3}\right)\cdot\left(-\frac{\sqrt{3}}{2}\right)\cdot\left(-\frac{\sqrt{2}}{2}\right)}{\left(-\frac{\sqrt{2}}{2}\right)}=-\frac{3}{2}$	
3(b)(2)	$\tan(90^\circ + x).\sin(-x - 180^\circ)$	$\checkmark \frac{\sin(90^\circ + x)}{\sin(90^\circ + x)}$
	$=\frac{\sin(90^{\circ}+x)}{\cos(90^{\circ}+x)}\sin[-(x+180^{\circ})]$	$\cos(90^\circ + x)$
	$\cos(90^\circ + x)$	$\checkmark -\sin(180^\circ + x)$
	$=\frac{\cos x}{-\sin x}\times-\sin(180^\circ+x)$	$\checkmark \checkmark \frac{\cos x}{-\sin x}$
	$=\frac{\cos x}{-\sin x}\times -(-\sin x)$	$ \begin{array}{l} \checkmark \sin x \\ \checkmark -\cos x \end{array} $
		(6)
	$=\frac{\cos x}{-\sin x} \times \sin x$	
	$ \begin{array}{l} -\sin x \\ = -\cos x \end{array} $	
L	••••	

MATHEMATICS	GRADE 12 SESSION 5		(TEACHER NOTES)	
4	$LHS = \frac{1 + \sin \theta}{\cos \theta} + \frac{\cos \theta}{1 + \sin \theta}$ $= \frac{(1 + \sin \theta)^2 + \cos^2 \theta}{\cos \theta (1 + \sin \theta)}$ $= \frac{1 + 2\sin \theta + \sin^2 \theta + \cos^2 \theta}{\cos \theta (1 + \sin \theta)}$ $= \frac{1 + 2\sin \theta + 1}{\cos \theta (1 + \sin \theta)}$ $= \frac{2 + 2\sin \theta}{\cos \theta (1 + \sin \theta)} = \frac{2(1 + \sin \theta)}{\cos \theta (1 + \sin \theta)}$	$\frac{\theta}{\theta} = \frac{2}{\cos \theta} = RHS$	$\checkmark \cos \theta (1 + \sin \theta)$ \checkmark $1 + 2 \sin \theta + \sin^2 \theta + \cos^2 \theta$ $\checkmark \sin^2 \theta + \cos^2 \theta = 1$ $\checkmark 2(1 + \sin \theta)$ $\checkmark \frac{2}{\cos \theta}$ (5)	

SECTION C: HOMEWORK

QUESTION 1

- (a) If $\frac{5\sin A}{2} = \sqrt{6}$ and $A \in [90^\circ; 360^\circ]$ calculate without the use of a calculator and with the aid of a diagram the value of $5\tan A.\cos A$.
- (b) If $\sin 32^\circ = m$, use a diagram to express the following in terms of *m*:

(1)	sin 328°	(4)
(2)	cos 58°	(2)

(3) $\tan 212^{\circ}$ (2)

QUESTION 2

Simplify the following without using a calculator:

(a)
$$\frac{\cos 210^\circ. \tan^2 315^\circ}{\sin 300^\circ. \cos 120^\circ}$$
 (5)

(b)
$$\frac{\sin^2(180^\circ + \theta).\sin(360^\circ - \theta)}{\cos^2(90^\circ - \theta).\cos(90^\circ + \theta)}$$
 (5)

(c)
$$\cos^2(360^\circ - x) - \sin(180^\circ - x)\cos(90^\circ + x) - \cos^2(180 + x)$$
 (5)

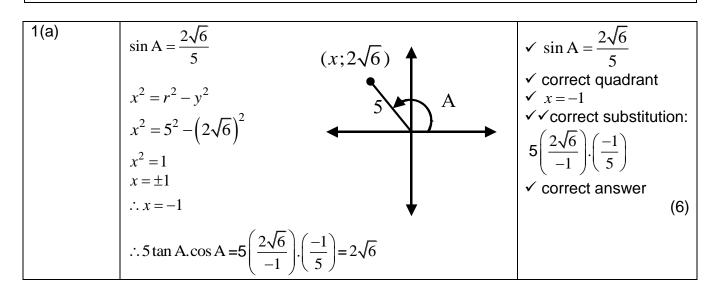
MATHEMATICS GRADE 12 SESSION 5 (TEACHER NOTES)

QUESTION 3

(a) Simplify:

$$\frac{\tan(180^\circ + x)\cos(360^\circ - x)}{\sin(180^\circ - x)\cos(90^\circ + x) + \cos(540^\circ + x)\cos(-x)}$$
(9)

(b) If $\cos 26^\circ = p$, express the following in terms of *p*:


$$\frac{\cos(-64^{\circ})\tan(-244^{\circ})\sin^2 334^{\circ}}{\cos 566^{\circ}}$$
(8)

QUESTION 4

Prove that:

$$\cos^2 x \left[\frac{1}{\sin x - 1} + \frac{1}{\sin x + 1} \right] = 2$$
 (5)

SECTION D: SOLUTIONS TO HOMEWORK

MATHEMATICS

SESSION 5

1(b)(1) 1(b)(2)	$\sin 32^\circ = \frac{m}{1}$ $x^2 + m^2 = 1$ $\therefore x = \sqrt{1 - m^2}$ $\sin 328^\circ = \sin 32^\circ = m$ x	✓ correct quadrant ✓ $x = \sqrt{1 - m^2}$ ✓ $\sin 328^\circ = \sin 32^\circ$ ✓ answer (4)
		✓ sin 32° ✓ answer (2)
1(b)(3)	$\tan 212^{\circ}$ $= \tan 32^{\circ}$ $= \frac{m}{\sqrt{1 - m^{2}}}$	$\checkmark \tan 32^{\circ}$ $\checkmark \frac{m}{\sqrt{1-m^2}}$ (2)
2(a)	$\frac{\frac{\cos 210^{\circ} \cdot \tan^{2} 315^{\circ}}{\sin 300^{\circ} \cdot \cos 120^{\circ}}}{\left(-\cos 30^{\circ}\right)(-\tan 45^{\circ})^{2}} = \frac{(-\cos 30^{\circ})(-\tan 45^{\circ})^{2}}{(-\sin 60^{\circ})(-\cos 60^{\circ})} = \frac{\left(-\frac{\sqrt{3}}{2}\right)(-1)^{2}}{\left(-\frac{\sqrt{3}}{2}\right)\left(-\frac{1}{2}\right)} = -2$	✓ $-\cos 30^{\circ}$ ✓ $(-\tan 45^{\circ})^2$ ✓ $-\sin 60^{\circ}$ ✓ $-\cos 60^{\circ}$ ✓ evaluating special angles ✓ answer (6)
2(b)	$\frac{\sin^{2}(180^{\circ} + \theta).\sin(360^{\circ} - \theta)}{\cos^{2}(90^{\circ} - \theta).\cos(90^{\circ} + \theta)}$ $= \frac{(\sin^{2}\theta)(-\sin\theta)}{(\sin^{2}\theta)(-\sin\theta)}$ $= 1$	Numerator: $\checkmark \sin^2 \theta$ $\checkmark -\sin \theta$ Denominator: $\checkmark \sin^2 \theta$ $\checkmark -\sin \theta$ $\checkmark 1$ (5)
2(c)	$ \cos^{2}(360^{\circ} - x) - \sin(180^{\circ} - x)\cos(90^{\circ} + x) - \cos^{2}(180 + x) = \cos^{2} x - (\sin x)(-\sin x) - \cos^{2} x = \sin^{2} x $	$\checkmark \sqrt[4]{ \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt$

SESSION 5

MATHEMATICS

GRADE 12

3(a)	$\tan(180^\circ + x)\cos(360^\circ - x)$	Numerator:
	$\overline{\sin(180^\circ - x)\cos(90^\circ + x) + \cos(540^\circ + x)\cos(-x)}$	$\checkmark \checkmark (\tan x)(\cos x)$
	$(\tan x)(\cos x)$	$\checkmark \frac{\sin x}{\cos x}$
	$=\frac{1}{(\sin x)(-\sin x) - (\cos x)(\cos x)}$	$\cos x$
	$\frac{\sin x}{\cos x}$	Denominator: ✓✓✓✓
	$-\frac{\cos x}{\cos x}$	$(\sin x)(-\sin x) - (\cos x)(\cos x)$
	$=\frac{\cos x}{-\sin^2 x - \cos^2 x}$	
	$\sin x$	$\checkmark - \left(\sin^2 x + \cos^2 x\right)$
	$=\frac{\sin x}{-\left(\sin^2 x + \cos^2 x\right)}$	$\checkmark -\sin x$ (9)
	$=-\sin x$	
3(b)	$2449 \sin^2 2249$	✓ cos 64°
	$\frac{\cos(-64^{\circ})\tan(-244^{\circ})\sin^2 334^{\circ}}{\cos 566^{\circ}}$	$\checkmark -\tan 64^\circ$
		$\checkmark \sin^2 26^\circ$
	$=\frac{(\cos 64^{\circ})(-\tan 244^{\circ})(-\sin 26^{\circ})^{2}}{\cos 206^{\circ}}$	$\checkmark -\cos 26^{\circ}$
		$\checkmark \frac{-\sin 64^{\circ}}{\cos 64^{\circ}}$
	$=\frac{(\cos 64^{\circ})(-\tan 64^{\circ})\sin^2 26^{\circ}}{2.52}$	
	$-\cos 26^{\circ}$	$\checkmark -\sin 64^{\circ}$
	$(\cos 64^{\circ}) \left(\frac{-\sin 64^{\circ}}{\sin^2 26^{\circ}} \right) \sin^2 26^{\circ}$	$\checkmark 1 - \cos^2 26^\circ$
	$=\frac{(\cos 64^\circ)\left(\frac{-\sin 64^\circ}{\cos 64^\circ}\right)\sin^2 26^\circ}{-\sin 64^\circ}$	$\checkmark 1 - p^2$
	$=\sin^2 26^\circ$	
	$=1-\cos^2 26^\circ$	(8)
	$=1-p^2$	
4	$\int \cos^2 r \left[1 + 1 \right]$	$\checkmark (1 + \sin x) + (1 - \sin x)$
	$\cos^2 x \left\lfloor \frac{1}{\sin x - 1} + \frac{1}{\sin x + 1} \right\rfloor$	$\checkmark (1 + \sin x)(1 - \sin x)$
	$= \cos^2 x \left[\frac{(1 + \sin x) + (1 - \sin x)}{(1 + \sin x)(1 - \sin x)} \right]$	$\checkmark \frac{2}{1 \sin^2 w}$
		$1-\sin x$
	$=\cos^2 x \left[\frac{2}{1-\sin^2 x}\right]$	$\checkmark \frac{2}{1-\sin^2 x}$ $\checkmark \frac{2}{\cos^2 x}$ $\checkmark 2$
		✓ 2 (5)
	$=\cos^2 x \left[\frac{2}{\cos^2 x}\right]$	
	= 2	

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS

SESSION 6

(TEACHER NOTES)

TRIGONOMETRY

Teacher Note: Trigonometry is an extremely important and large part of Paper 2. Ensure that learners master all the basic rules and definitions and be able to apply these rules in many different types of questions. In this session learners will concentrate on Grade 12 Trigonometry which involves compound and double angles. These Grade 12 concepts will be integrated with the trigonometry studied in Grade 11. Before attempting the typical exam questions, learners must familiarise themselves with the basics in Section B of the learner notes.

LESSON OVERVIEW

1.	Introduction session:	10 minutes
	Discuss Homework from Session 5	10 minutes
2.	Typical exam questions:	
	Question 1	15 minutes
	Question 2:	10 minutes
	Question 3:	5 minutes
3.	Discussion of solutions:	35 minutes
4	Discuss Homework for this session	5 minutes

GRADE 12

SECTION A: TYPICAL EXAM QUESTIONS

QUESTION 1

Simplify the following without using a calculator:

(a)
$$\frac{\tan(-60^{\circ})\cos(-156^{\circ})\cos 294^{\circ}}{\sin 492^{\circ}}$$
 (7)

(b)
$$\frac{\cos^2 375^\circ - \cos^2(-75^\circ)}{\sin(-50^\circ)\sin 230^\circ - \sin 40^\circ \cos 310^\circ}$$
(7)

[14]

QUESTION 2

- (a) Show that $\cos(60^\circ + \theta) \cos(60^\circ \theta) = -\sqrt{3}\sin\theta$ (5)
- (b) Hence, evaluate $\cos 105^\circ + \cos 15^\circ$ without using a calculator. (5)

[10]

GAUTENG DEPARTMENT OF EDUCATION		SENIOR SECONDARY INTERVENTION PROGRAMME	
MATHEMATICS	GRADE 12	SESSION 6	(TEACHER NOTES)

QUESTION 3

Rewrite $\cos 3\theta$ in terms of $\cos \theta$.

[6]

SECTION B: SOLUTIONS AND HINTS

r		
1(a)	$\frac{\tan(-60^\circ)\cos(-156^\circ)\cos 294^\circ}{1000}$	✓ $(-\tan 60^\circ)(\cos 156^\circ)$
	sin 492°	$\checkmark -\cos 66^{\circ}$
	$-(-\tan 60^\circ)(\cos 156^\circ)(-\cos 66^\circ)$	$\checkmark \sin 48^{\circ}$
	$= \frac{1}{(\sin 132^{\circ})}$	$\checkmark -\sqrt{3}$
	$(-\sqrt{3})(-\cos 24^{\circ})(-\sin 24^{\circ})$	$\checkmark -\sin 24^\circ$
	$=\frac{(-\sqrt{3})(-\cos 24^{\circ})(-\sin 24^{\circ})}{(\sin 48^{\circ})}$	$\checkmark 2\sin 24^{\circ}\cos 24^{\circ}$
		$\checkmark \frac{\sqrt{3}}{2}$
	$=\frac{(-\sqrt{3})(-\cos 24^{\circ})(-\sin 24^{\circ})}{2\sin 24^{\circ}\cos 24^{\circ}}$	2
		(7)
	$=-\frac{\sqrt{3}}{2}$	
	$=-\frac{1}{2}$	
1(b)	$\cos^2 375^\circ - \cos^2(-75^\circ)$	$\checkmark \cos^2 15^\circ$
	$\frac{1}{\sin(-50^\circ)\sin 230^\circ + \sin 40^\circ \cos 310^\circ}$	$\checkmark \cos^2 75^\circ$
		$\checkmark \sin^2 50^\circ$
	$= \frac{\cos^2 15^\circ - \cos^2 75^\circ}{\cos^2 75^\circ}$	$\checkmark \cos^2 50^\circ$
	$(-\sin 50^\circ)(-\sin 50^\circ) + (\sin 40^\circ)(\cos 50^\circ)$	$\checkmark \cos 30^{\circ}$
	$\cos^2 15^\circ - \sin^2 15^\circ$	✓ 1
	$=\frac{1}{\sin^2 50^\circ + (\cos 50^\circ)(\cos 50^\circ)}$	
		$\checkmark \frac{\sqrt{3}}{2}$
	$=\frac{\cos^2 15^\circ - \sin^2 15^\circ}{\sin^2 50^\circ + \cos^2 50^\circ}$	(7)
	$\sin^2 50^\circ + \cos^2 50^\circ$	(,,,
	$=\frac{\cos 2(15^{\circ})}{1}$	
	1	
	$=\cos 30^{\circ}$	
	$\sqrt{3}$	
	$=\frac{\sqrt{3}}{2}$	[14]
2(a)		[14] ✓
2(0)	$\cos(60^\circ + \theta) - \cos(60^\circ - \theta)$	$\cos 60^\circ . \cos \theta - \sin 60^\circ . \sin \theta \checkmark$
	$= \cos 60^{\circ} . \cos \theta - \sin 60^{\circ} . \sin \theta - (\cos 60^{\circ} . \cos \theta + \sin 60^{\circ} . \sin \theta)$	$\cos 60^{\circ} . \cos \theta + \sin 60^{\circ} . \sin \theta \checkmark$
		_
	$= \left(\frac{1}{2}\right) \cdot \cos \theta - \left(\frac{\sqrt{3}}{2}\right) \cdot \sin \theta - \left(\frac{1}{2}\right) \cdot \cos \theta - \left(\frac{\sqrt{3}}{2}\right) \cdot \sin \theta$	$\frac{\sqrt{3}}{2}$
	$\left[-\left(\frac{1}{2}\right)^{-\cos\theta}-\left(\frac{1}{2}\right)^{-\sin\theta}-\left(\frac{1}{2}\right)^{-\cos\theta}-\left(\frac{1}{2}\right)^{-\sin\theta}\right]$	ے 1
	$=-\sqrt{3}\sin\theta$	$\checkmark \frac{1}{2}$
	- v 55m0	$\checkmark -\sqrt{3}\sin\theta$
		,
		(5)

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS		GRADE 12	SESSION 6	(TEACHER NOTES)
2(b)	$cos105^{\circ} + cos15^{\circ}$ $= cos(60^{\circ} + 45^{\circ}) -$ $= -\sqrt{3}sin45^{\circ}$ $= -\sqrt{3}\left(\frac{\sqrt{2}}{2}\right)$ $= \frac{-\sqrt{6}}{2}$	cos(60° – 45°)		$\checkmark \cos(60^\circ + 45^\circ)$ $\checkmark \cos(60^\circ - 45^\circ)$ $\checkmark -\sqrt{3}\sin 45^\circ$ $\checkmark \frac{\sqrt{2}}{2}$ $\checkmark \frac{-\sqrt{6}}{2}$ (5) [10]
3	$\cos 3\theta$ $= \cos(2\theta + \theta)$ $= \cos 2\theta \cdot \cos \theta - \sin \theta$ $= (2\cos^2 \theta - 1) \cdot \cos \theta$ $= 2\cos^3 \theta - \cos \theta - 2$ $= 4\cos^3 \theta - 3\cos \theta$	$\theta - (2\sin\theta\cos\theta) \cdot \sin\theta$ $2\sin^2\theta \cdot \cos\theta$ $2(1 - \cos^2\theta) \cos\theta$ $2(\cos\theta - \cos^3\theta)$		$\checkmark \cos(2\theta + \theta)$ $\checkmark \cos 2\theta . \cos \theta - \sin 2\theta . \sin \theta$ $\checkmark 2\cos^2 \theta - 1$ $\checkmark 2\sin \theta \cos \theta$ $\checkmark 1 - \cos^2 \theta$ $\checkmark 4\cos^3 \theta - 3\cos \theta$ [6]

SECTION C: HOMEWORK

QUESTION 1

Determine the value of the following without using a calculator.

(a)
$$\frac{\sin 34^{\circ} \cos 10^{\circ} - \cos 34^{\circ} \sin 10^{\circ}}{\sin 12^{\circ} \cos 12^{\circ}}$$
 (3)

(b)
$$\sin(-285^{\circ})$$
 (5)

(c)
$$\frac{\cos^2 15^\circ - \sin 15^\circ \cos 75^\circ}{\cos^2 15^\circ + \sin 15^\circ \cos 15^\circ \tan 15^\circ}$$
 (6)
[14]

GAUTENG DEPARTMENT OF EDUCATION		SENIOR SECONDARY	INTERVENTION PROGRAMME		
MATHEMATICS		GRADE 12	SESSION 6	(TEACHER NOTES)	
QUE	QUESTION 2				
(a) Prove that $\sin(45^\circ + \theta) \cdot \sin(45^\circ - \theta) = \frac{1}{2}$			$=\frac{1}{2}\cos 2\theta$	(5)	
(b) Hence determine the value of $\sin 75^\circ$.		°.sin15°	(3) [8]		
	OUESTION 3				

QUESTION 3

Prove that: $\sin 4\theta = 4\sin \theta . \cos \theta - 8\sin^3 \theta . \cos \theta$

SOLUTIONS TO HOMEWORK: TRIGONOMETRY (A)

1(a)	$\sin 34^\circ \cos 10^\circ - \cos 34^\circ \sin 10^\circ$	$\checkmark \sin 24^{\circ}$
	sin12° cos12°	$\checkmark 2\sin 12^{\circ}\cos 12^{\circ}$
	sin(34°-10°)	✓ 2
	$=\frac{1}{\sin 12^{\circ}\cos 12^{\circ}}$	(3)
	sin 24°	
	$=\frac{1}{\sin 12^{\circ}\cos 12^{\circ}}$	
	$2\sin 12^{\circ}\cos 12^{\circ}$	
	$=\frac{1}{\sin 12^{\circ}\cos 12^{\circ}}$	
	= 2	
1(b)	sin(-285°)	$\checkmark -\sin 285^{\circ}$
	$=-\sin 285^{\circ}$	$\checkmark \sin 75^{\circ}$
	$=-\sin(360^{\circ}-75^{\circ})$	$\checkmark \sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \sin 30^{\circ}$
	$=-(-\sin 75^\circ)$	$\checkmark \left(\frac{\sqrt{2}}{2}\right) \left(\frac{\sqrt{3}}{2}\right) + \left(\frac{\sqrt{2}}{2}\right) \left(\frac{1}{2}\right)$
	$=\sin 75^{\circ}$	
	$=\sin(45^\circ+30^\circ)$	$\checkmark \frac{\sqrt{6} + \sqrt{2}}{1}$
	$= \sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \sin 30^{\circ}$	4 (5)
	$= \left(\frac{\sqrt{2}}{2}\right) \left(\frac{\sqrt{3}}{2}\right) + \left(\frac{\sqrt{2}}{2}\right) \left(\frac{1}{2}\right)$	(5)
	$=\frac{\sqrt{6}+\sqrt{2}}{4}$	

[4]

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEM	ATICS GRADE 12 SES	SION 6 (TEACHER	NOTES)
1(c)	$\frac{\cos^2 15^\circ - \sin 15^\circ \cos 75^\circ}{\cos^2 15^\circ + \sin 15^\circ \cos 15^\circ \tan 15^\circ}$ = $\frac{\cos^2 15^\circ - \sin 15^\circ \cos(90^\circ - 15^\circ)}{\cos^2 15^\circ + \sin 15^\circ \cos 15^\circ \left(\frac{\sin 15^\circ}{\cos 15^\circ}\right)}$ = $\frac{\cos^2 15^\circ - \sin 15^\circ . \sin 15^\circ}{\cos^2 15^\circ + \sin^2 15^\circ}$ $\cos^2 15^\circ - \sin^2 15^\circ$	$\checkmark \cos^2 15^\circ - \sin 15^\circ \cdot \sin 15^\circ$ $\checkmark \frac{\sin 15^\circ}{\cos 15^\circ}$ $\checkmark \cos^2 15^\circ + \sin^2 15^\circ$ $\checkmark 1$ $\checkmark \cos 30^\circ$ $\checkmark \frac{\sqrt{3}}{2}$	(6)
	$= \frac{\cos^2 15^\circ - \sin^2 15^\circ}{1}$ = $\cos^2 15^\circ - \sin^2 15^\circ$ = $\cos 2(15^\circ) = \cos 30^\circ = \frac{\sqrt{3}}{2}$		[14]
2(a)	$\sin(45^\circ + \theta) \cdot \sin(45^\circ - \theta)$ $= \left[\sin 45^\circ \cos \theta + \cos 45^\circ \sin \theta\right] \left[\sin 45^\circ \cos \theta - \cos 45^\circ \sin \theta$ $= \left[\frac{\sqrt{2}}{2}\cos \theta + \frac{\sqrt{2}}{2}\sin \theta\right] \left[\frac{\sqrt{2}}{2}\cos \theta - \frac{\sqrt{2}}{2}\sin \theta\right]$ $= \left[\frac{\sqrt{2}}{2}(\cos \theta + \sin \theta)\right] \left[\frac{\sqrt{2}}{2}(\cos \theta - \sin \theta)\right]$ $= \frac{2}{4}(\cos \theta + \sin \theta)(\cos \theta - \sin \theta)$	✓ expansion of $\sin(45^\circ + \theta)$ ✓ expansion of $\sin(45^\circ - \theta)$ ✓ $\sin 45^\circ = \cos 45^\circ = \frac{\sqrt{2}}{2}$ ✓ $(\cos^2 \theta - \sin^2 \theta)$ ✓ $\frac{1}{2}\cos 2\theta$	
	$=\frac{1}{2}(\cos^2\theta - \sin^2\theta) = \frac{1}{2}\cos 2\theta$		(5)
2(b)	$\sin 75^{\circ} \cdot \sin 15^{\circ}$ = $\sin(45^{\circ} + 30^{\circ}) \cdot \sin(45 - 30^{\circ})$ = $\frac{1}{2}\cos 2(30^{\circ}) = \frac{1}{2}\cos 60^{\circ} = \frac{1}{2}\left(\frac{1}{2}\right) = \frac{1}{4}$	✓ $45^\circ + 30^\circ$; $45^\circ - 30^\circ$ ✓ $\frac{1}{2}\cos 60^\circ$ ✓ $\frac{1}{4}$	(3) [8]
3	$\sin 4\theta$ = sin 2(2 θ) = 2 sin 2 θ .cos 2 θ = 2(2 sin θ .cos θ)(1 - 2 sin ² θ) = 4 sin θ .cos θ - 8 sin ³ θ .cos θ	✓ $2\sin 2\theta \cdot \cos 2\theta$ ✓ $2\sin \theta \cdot \cos \theta$ ✓ $1-2\sin^2\theta$ ✓ $4\sin \theta \cdot \cos \theta - 8\sin^3 \theta \cdot \cos \theta$	[4]

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS

SESSION 7

(TEACHER NOTES)

TRIGONOMETRY

Teacher Note: Trigonometry is an extremely important and large part of Paper 2. Ensure that learners master all the basic rules and definitions and be able to apply these rules in many different types of questions. In this session learners will concentrate on Grade 12 Trigonometry which involves compound and double angles. These Grade 12 concepts will be integrated with the trigonometry studied in Grade 11. Before attempting the typical exam questions, learners must familiarise themselves with the basics in Section B of the learner notes.

GRADE 12

LESSON OVERVIEW

1.	Introduction session: Homework Discussion	5 minutes 10 minutes
2.	Typical exam questions:	
	Question 1:	15 minutes
	Question 2:	10 minutes
	Question 3:	10 minutes
3. 4.	Discussion of solutions: Discuss Homework	35 minutes 5 minutes

SECTION A: TYPICAL EXAM QUESTIONS

QUESTION 1

Prove that:

(a) –	$\frac{-\cos 2x - \sin x}{\sin 2x - \cos x} = \tan x$	(6)
-------	---	-----

(b)
$$\frac{\sin\theta + \sin 2\theta}{1 + \cos \theta + \cos 2\theta} = \tan \theta$$
 (6)

(c)
$$\frac{\cos 2A}{1+\sin 2A} = \frac{\cos A - \sin A}{\cos A + \sin A}$$
(5)

QUESTION 2

It is known that $13\sin\alpha - 5 = 0$ and $\tan\beta = -\frac{3}{4}$ where $\alpha \in [90^\circ; 270^\circ]$ and $\beta \in [90^\circ; 270^\circ]$. Determine, without using a calculator, the values of the following:

(a)	$\cos \alpha$	(5)
(b)	$\cos(\alpha + \beta)$	(6)
		[11]

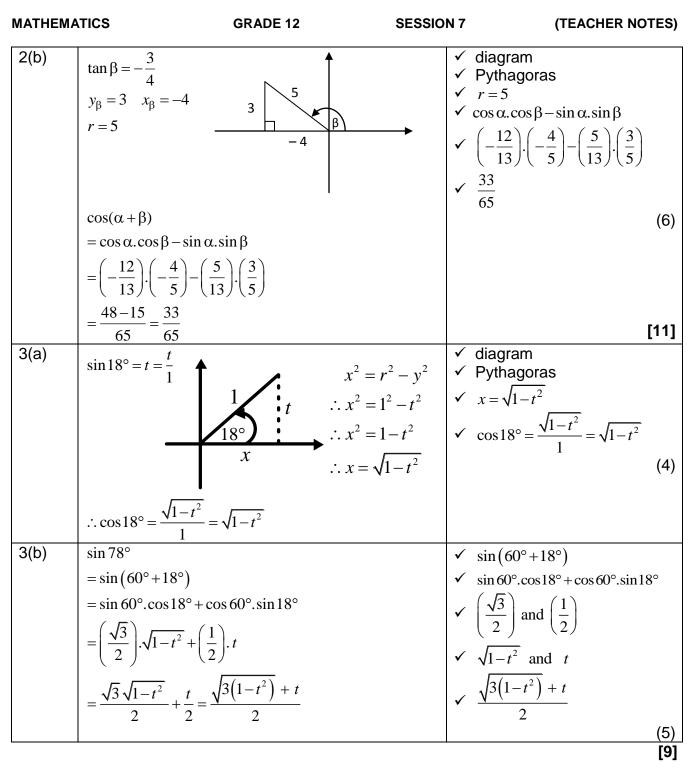
Page 53 of 123

[17]

GAUTENG DEPARTMENT OF EDUCATION		UCATION SEN	IOR SECONDARY INT	ERVENTION PROGRAMME	
MATH	EMATICS	GRADE 12	SESSION 7	(TEACHER NOTES)	
QUESTION 3					
lf sin	If $\sin 18^\circ = t$ determine the following in terms of <i>t</i> .				
(a)	cos18°			(4)	
(b)	sin 78°			(5)	

SECTION B: SOLUTIONS AND HINTS

		1
1(a)	$\frac{1-\cos 2x-\sin x}{2}$	$\checkmark 1 - 2\sin^2 x$
	$\sin 2x - \cos x$	$\checkmark 2\sin x \cos x$
	$1 - (1 - 2\sin^2 x) - \sin x$	$\checkmark \sin x(2\sin x-1)$
	$= \frac{1}{2\sin x \cos x - \cos x}$	$\checkmark \cos x(2\sin x - 1)$
	$1 - 1 + 2\sin^2 x - \sin x$	$\checkmark \frac{\sin x}{\cos x}$
	$=\frac{1}{2\sin x\cos x - \cos x}$	$\cos x$
	$2\sin^2 x - \sin x$	$\checkmark \tan x$ (6)
	$=\frac{2\sin x - \sin x}{2\sin x \cos x - \cos x}$	(0)
	$\frac{2 \sin x \cos x}{\sin x(2 \sin x - 1)}$	
	$=\frac{\sin x(2\sin x-1)}{\cos x(2\sin x-1)}$	
	$=\frac{\sin x}{\cos x}=\tan x$	
1(b)	$\frac{\cos x}{\sin \theta + \sin 2\theta}$	$\checkmark 2\sin\theta\cos\theta$
	$\frac{\sin \theta + \sin 2\theta}{1 + \cos \theta + \cos 2\theta}$	$\checkmark 2\cos^2\theta - 1$
	$\sin \theta + 2\sin \theta \cdot \cos \theta$	$\checkmark \sin \theta (1 + 2\cos \theta)$
	$=\frac{\sin\theta + 2\sin\theta \cos\theta}{1 + \cos\theta + (2\cos^2\theta - 1)}$	· · · · · ·
		$\checkmark \cos \theta (1 + 2\cos \theta)$
	$=\frac{\sin\theta(1+2\cos\theta)}{1+2\cos\theta}$	$\checkmark \frac{\sin \theta}{\cos \theta}$
	$\cos\theta + 2\cos^2\theta$	$\cos \theta$
	$\sin\theta(1+2\cos\theta)$	$\checkmark \tan \theta$ (6)
	$=\frac{1}{\cos\theta(1+2\cos\theta)}$	(0)
	sinθ	
	$=\frac{1}{\cos\theta}$	
	$= \tan \theta$	



SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS		GRADE 12	SESSION 7	(TEACHER NOTES)
1(c)	$\frac{\cos 2A}{1+\sin 2A}$ $=\frac{\cos^2 A - \sin^2 A}{1+2\sin A \cos A}$ $=\frac{(\cos A + \sin A)(1+2)}{\sin^2 A + \cos^2 A}$ $=\frac{(\cos A + \sin A)(1+2)}{\sin^2 A + 2\sin A}$ $=\frac{(\cos A + \sin A)(1+2)}{(\sin A + \cos A)(1+2)}$	$+2\sin A \cos A$ $\cos A - \sin A)$ $\cos A + \cos^{2} A$ $\cos A - \sin A)$	√ √ √	$\int \frac{\cos^2 A - \sin^2 A}{2 \sin A \cos A}$ $\int (\cos A + \sin A)(\cos A - \sin A)$ $\int (\sin A + \cos A)(\sin A + \cos A)$ $\int \frac{\cos A - \sin A}{\cos A + \sin A}$ (5)
	$=\frac{\cos A - \sin A}{\cos A + \sin A}$			[17]
2(a)	$\sin \alpha = \frac{5}{13}$ $y_{\alpha} = 5 r_{\alpha} = 13$ $x^{2} + (5)^{2} = (13)^{2}$ $\therefore x^{2} = 144$ $\therefore x_{\alpha} = -12$ $\therefore \cos \alpha = -\frac{12}{13}$	5 -12 α	✓ ✓ ✓	$f \sin \alpha = \frac{5}{13}$ diagram Pythagoras $x_{\alpha} = -12$ $f \cos \alpha = -\frac{12}{13}$ (5)

SENIOR SECONDARY INTERVENTION PROGRAMME

SECTION C: HOMEWORK

QUESTION 1

Prove that:

(a)
$$(\tan x - 1)(\sin 2x - 2\cos^2 x) = 2(1 - 2\sin x \cos x)$$

education Department Education GAUTENG PROVINCE (6)

SENIOR SECONDARY INTERVENTION PROGRAMME

(b)
$$\frac{\cos 2x}{\cos x - \sin x} = \cos x + \sin x$$
 (3)
[9]

QUESTION 2

(a) Show that
$$\sin(45^\circ - \alpha) = \frac{\sqrt{2}(\cos \alpha - \sin \alpha)}{2}$$
 (3)

(b) Hence prove that
$$\sin 2\alpha + 2\sin^2(45^\circ - \alpha) = 1$$
 (6)

QUESTION 3

If $\cos\beta = \frac{p}{\sqrt{5}}$ where p < 0 and $\beta \in [180^\circ; 360^\circ]$, determine, using a diagram, an expression in terms of p for:

(a)
$$\tan\beta$$
 (4)

(b)
$$\cos 2\beta$$
 (3) [7]

QUESTION 4

If $\sin 61^\circ = \sqrt{a}$, determine the value of the following in terms of *a*:

 $\cos 73^{\circ}\cos 15^{\circ}+\sin 73^{\circ}\sin 15^{\circ}$

SECTION D: SOLUTIONS TO HOMEWORK: TOPIC 2: TRIGONOMETRY (2)

4(-)	2	•
1(a)	$(\tan x - 1)(\sin 2x - 2\cos^2 x)$	$\checkmark \frac{\sin x}{\cos x}$
	$(\sin r)$	$\cos x$
	$=\left(\frac{\sin x}{\cos x}-1\right)\left(2\sin x.\cos x-2\cos^2 x\right)$	$\checkmark 2\sin x \cos x$
		$\sin x - \cos x$
	$-(\sin x - \cos x)_{2\cos x(\sin x - \cos x)}$	$\checkmark \frac{1}{\cos x}$
	$= \left(\frac{\sin x - \cos x}{\cos x}\right) 2\cos x (\sin x - \cos x)$	$\checkmark 2\cos x (\sin x - \cos x)$
	$=2(\sin x - \cos x)^2$	$\checkmark 2(\sin^2 x - 2\sin x . \cos x + \cos^2 x)$
		· · · · · · · · · · · · · · · · · · ·
	$=2(\sin^2 x - 2\sin x.\cos x + \cos^2 x)$	$\checkmark 2(1-2\sin x.\cos x)$
	$=2(1-2\sin x.\cos x)$	(6)
1(b)	$\cos 2x$	$\checkmark \cos^2 x - \sin^2 x$
	$\cos x - \sin x$	$\checkmark (\cos x - \sin x)(\cos x + \sin x)$
	$=\frac{\cos^2 x - \sin^2 x}{\sin^2 x}$	$\checkmark \cos x + \sin x$
	$\cos x - \sin x$	(3)
	$=\frac{(\cos x - \sin x)(\cos x + \sin x)}{(\cos x + \sin x)}$	
	$-\frac{1}{\cos x - \sin x}$	[0]
	$=\cos x + \sin x$	[9]

[6]

[9]

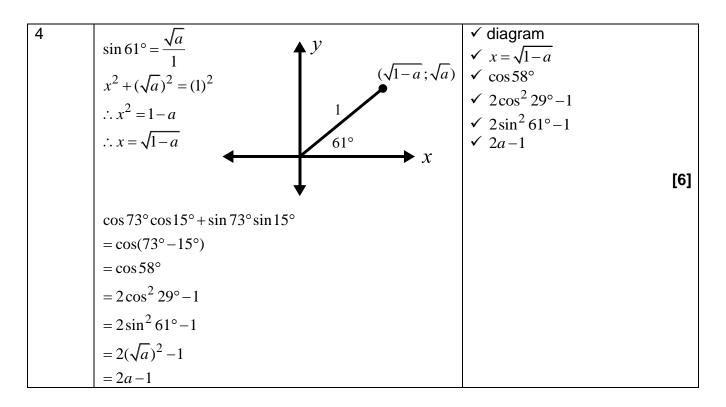
SENIOR SECONDARY INTERVENTION PROGRAMME

ΜΔΤ	НЕМ	ATICS	5

GRADE 12

SESSION 7

$\Omega(a)$	-1 $(450$ $-1)$	150 min 150 min 150 min 150 min 150
2(a)	$\sin(45^\circ - \alpha)$	$\checkmark \sin 45^\circ \cdot \cos \alpha - \cos 45^\circ \cdot \sin \alpha$
	$= \sin 45^{\circ} \cdot \cos \alpha - \cos 45^{\circ} \cdot \sin \alpha$	$\checkmark \frac{\sqrt{2}}{2} .\cos \alpha - \frac{\sqrt{2}}{2} .\sin \alpha$
	$=\frac{\sqrt{2}}{2}.\cos\alpha - \frac{\sqrt{2}}{2}.\sin\alpha$	\angle \angle
		$\checkmark \frac{\sqrt{2}}{2}(\cos\alpha - \sin\alpha)$
	$=\frac{\sqrt{2}}{2}(\cos\alpha - \sin\alpha)$	(3)
	2	(0)
	$=\frac{\sqrt{2}(\cos\alpha - \sin\alpha)}{2}$	
	2	
2(b)	$\sin 2\alpha + 2\sin^2(45^\circ - \alpha)$	$\checkmark 2\sin\alpha.\cos\alpha$
	2	$\left[\sqrt{2}(\cos\alpha - \sin\alpha)\right]^2$
	$= 2\sin\alpha.\cos\alpha + 2\left[\sin\left(45^\circ - \alpha\right)\right]^2$	$\checkmark 2 \left \frac{\sqrt{2} (\cos \alpha - \sin \alpha)}{2} \right ^2$
	$\left[\sqrt{2}(\cos\alpha - \sin\alpha)\right]^2$	
	$= 2\sin\alpha.\cos\alpha + 2 \left \frac{\sqrt{2}(\cos\alpha - \sin\alpha)}{2} \right ^2$	$\checkmark (\cos\alpha - \sin\alpha)^2$
	$\begin{pmatrix} 2 & & & \end{pmatrix}^2$	$\checkmark \cos^2 \alpha - 2\sin \alpha \cos \alpha + \sin^2 \alpha$
	$= 2\sin\alpha.\cos\alpha + 2\left(\frac{2(\cos\alpha - \sin\alpha)^2}{4}\right)$	$\checkmark \cos^2 \alpha + \sin^2 \alpha$
	$\begin{pmatrix} 4 \end{pmatrix}$	✓ 1 (D)
	$= 2\sin\alpha.\cos\alpha + (\cos\alpha - \sin\alpha)^2$	(6)
	$= 2\sin\alpha.\cos\alpha + \cos^2\alpha - 2\sin\alpha\cos\alpha + \sin^2\alpha$	
	$=\cos^2\alpha + \sin^2\alpha = 1$	[9]
3(a)	$\cos\beta = \frac{p}{\sqrt{5}}$	✓ diagram
	$\sqrt{5}$	✓ Pythagoras
	x = p	$\checkmark y = -\sqrt{5 - p^2}$
	$\frac{p}{r}$	$\checkmark \tan \beta = \frac{-\sqrt{5-p^2}}{r}$
	$r = \sqrt{5} p^{2} + y^{2} = (\sqrt{5})^{2} \qquad -\sqrt{5 - p^{2}} \qquad \sqrt{5}$	\checkmark tan $\beta = \frac{p}{p}$
	$p + y = (\sqrt{5})$	_
	$\therefore y^2 = 5 - p^2$	(4)
	$\therefore y = -\sqrt{5 - p^2}$	
	$\therefore \tan \beta = \frac{-\sqrt{5-p^2}}{p^2}$	
	$\dots \tan p = \frac{p}{p}$	
3(b)	$\frac{p}{\cos 2\beta = 2\cos^2 \beta - 1}$	$\checkmark \cos 2\beta = 2\cos^2 \beta - 1$
	$=2\left(\frac{p}{\sqrt{5}}\right)^2 -1$	✓ $2\left(\frac{p}{\sqrt{5}}\right)^2 - 1$ ✓ $\frac{2p^2}{5} - 1$
		$2n^2$
	$=\frac{2p^2}{5}-1$	$\checkmark \frac{2p}{5} - 1$
	5	3 (3)
		[7]



SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS

SESSION 7

(TEACHER NOTES)

Page 59 of 123

GAU	TENG DE	PARTMENT OF EDUC	ATION	SENIOR SECOND	ARY INTERVENTION PROG	RAMME
MATI	HEMATIC	s g	RADE 12	SESSION 8	(TEACHER	NOTES)
CON	ISOLIDA	ATION				
Lear com topic	plete ea . Learne	ould attempt the qu ch section in time s	et and then t tions with Le	to discuss the soluti earner Homework S	It is suggested that lean ions before doing the se Solutions. Encourage lea	cond
тор	IC 1:	NUMBER PATTE	RNS, SEQU	ENCES AND SER	ES	
SE		A: TYPICAL EXAM	QUESTION			
QUE	STION	1	(De	oE Nov 2008)	Time: 25 minutes	
1.1	Consi	der the sequence:	$\frac{1}{2};4;\frac{1}{4};7$	$;\frac{1}{8}; 10;$		
	1.1.1	If the pattern cont in the sequence.	inues in the s	same way, write do	wn the next TWO terms	(1)
	1.1.2	Calculate the sum	of the first 5	50 terms of the sequ	ience.	(7)
1.2	Consi	der the sequence:	8;18;30	; 44 ;		
	1.2.1	Write down the ne in the same way.	ext TWO tern	ns of the sequence,	if the pattern continues	(2)
	1.2.2	Calculate the n^{th}	term of the	sequence.		(6)
	1.2.3	Which term of the	sequence is	330?		(6)
						[22]
]

SECTION B: SOLUTIONS TO SECTION A: TOPIC 1

QUESTION 1

Time for discussion of solution: 15 minutes

|--|

SENIOR SECONDARY INTERVENTION PROGRAMME

SESSION 8

GRADE 12

1.1.2	$S_{50} = 25 \text{ terms of } 1^{\text{st}} \text{ sequence } + 25 \text{ terms of } 2^{\text{nd}} \text{ sequence}$ $S_{50} = \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots \text{ to } 25 \text{ terms}\right) + \left(4 + 7 + 10 + 13 + \dots \text{ to } 25 \text{ terms}\right)$ $S_{50} = \frac{\frac{1}{2}\left(\left(\frac{1}{2}\right)^{25} - 1\right)}{\frac{1}{2} - 1} + \frac{25}{2}\left[2(4) + 24(3)\right]$ $S_{50} = 0.9999999 + 1000$ $S_{50} = 1001,00$ $60 \text{ ; } 78$	 ✓ separating the sequences ✓ ✓ sum of geometric series ✓ ✓ sum of arithmetic series ✓ ✓ final answer (7)
1.2.2	$a+b+c \otimes 18 30 44 60 78 98$ $3a+b 10 12 14 16 18 20$ $a+b+c=8$	✓ first difference row ✓ second difference ✓ $a=1$ ✓ $b=7$ ✓ $c=0$ ✓ $T_n = n^2 + 7n$ (6)
1.2.3	$330 = n^{2} + 7n$ $\therefore -n^{2} - 7n + 330 = 0$ $\therefore n^{2} + 7n - 330 = 0$ $\therefore n = \frac{-7 \pm \sqrt{(7)^{2} - 4(1)(-330)}}{2}$ $\therefore n = \frac{-7 \pm 37}{2}$ $\therefore n = 15 \text{ or } n = -22$ (not valid)	✓ $330 = n^2 + 7n$ ✓ $n^2 + 7n - 330 = 0$ ✓ ✓ Substitution into formula or factorising ✓ $n = 15$ or $n = -22$ ✓ $n \neq -22$ (6)
	Alternatively, factorise: (n-15)(n+22) = 0	[22]

GAUTENG DEPARTMENT OF EDUCATION	SENIOR SECONDARY INTERVENTION PROGRAMME
CACTERO DEL ARTIMENT OF EDUCATION	

MATHEMATICS GRADE 12 **SESSION 8**

(TEACHER NOTES)

CONSOLIDATION: TOPIC 2: FINANCIAL MATHS AND TRIGONOMETRY

Time: 25 minutes

SECTION A: TYPICAL EXAM QUESTIONS

QUESTION 1

- 1.1 Nicholas decides to invest money into the share market in order to save up R800 000 in ten years time. He believes that he can average a return of 18% per annum compounded monthly. Starting immediately, he starts making monthly payments into a share market account.
 - 1.1.1 How much must Nicholas invest per month in order to obtain his R800 000? (5)
 - 1.1.2 At the end of the ten-year period, Nicholas decides not to spend the R800 000 but to rather invest it at an interest rate of 18% per annum compounded half-yearly. How much money will he have then saved four years later?

(4)

1.2 Bonolo borrows money from the bank in order to finance a new home. She takes out a twenty year loan and begins to make monthly payments of R6000 per month starting in one month's time. The current interest rate is 15% per annum compounded monthly. Calculate how much the new home originally cost.

(4) [9]

[23]

QUESTION 2

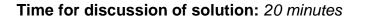
If $13\sin\theta - 5 = 0$ where $\theta \in [90^\circ; 360^\circ]$ and $5\cos\beta + 4 = 0$ where $\tan\beta > 0$, calculate 2.1 without the use of a calculator and with the aid of diagrams the value of the following:

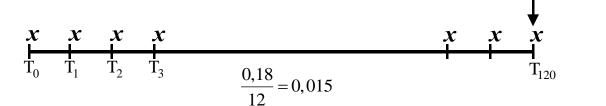
(9)

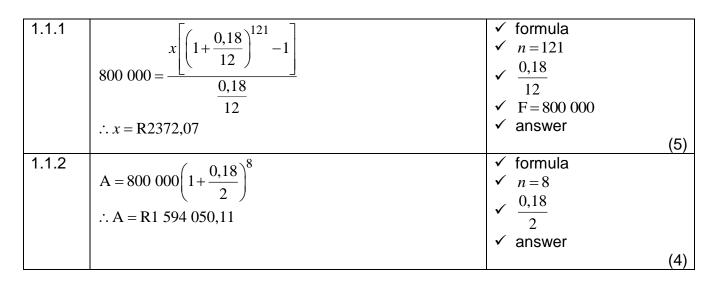
- 2.1.2 $tan(90^{\circ} + \theta)$ (5)
- 2.2 Simplify without using a calculator:

2.2.1	$\cos(50^\circ + x)\cos(20^\circ + x) + \sin(50^\circ + x)\sin(20^\circ + x)$	(3)
-------	---	-----

2.2.2 $\cos(-140^\circ)\cos 740^\circ - \sin 140^\circ \sin(-20^\circ)$ (6)


MATHEMATICS

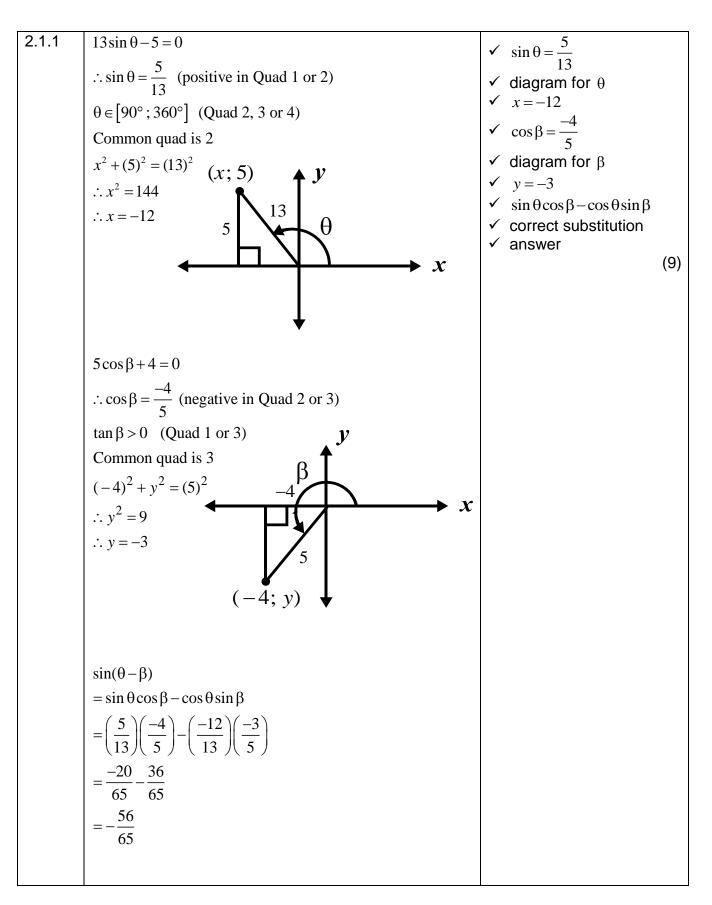

SESSION 8


(TEACHER NOTES)

800 000

SECTION B: SOLUTIONS TO SECTION A: TOPIC 2

	P 6000 6000 6000	6000 6000
,	$T_0 = T_1 = T_2 = T_3 = \frac{0.15}{12} = 0.0125$	T ₂₄₀
1.2	P = $\frac{6000 \left[1 - \left(1 + \frac{0.15}{12} \right)^{-240} \right]}{\frac{0.15}{12}}$ ∴ x = R455 653,67	✓ formula ✓ $n = 240$ ✓ $\frac{0.15}{12}$ ✓ answer (4)



SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS

GRADE 12

SESSION 8

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS

GRADE 12

SESSION 8

2.1.2	$\tan(90^\circ + \theta)$ $= \frac{\sin(90^\circ + \theta)}{\cos(90^\circ + \theta)}$ $= \frac{\cos \theta}{-\sin \theta}$ $\frac{-12}{13}$	$\checkmark \frac{\sin(90^\circ + \theta)}{\cos(90^\circ + \theta)}$ $\checkmark \cos \theta$ $\checkmark -\sin \theta$ $\checkmark \text{ correct substitution}$ $\checkmark \text{ answer}$ (5)
2.2.1	$=\frac{\frac{-12}{13}}{\frac{-5}{13}}$ = $\frac{12}{5}$ $\cos(50^\circ + x)\cos(20^\circ + x) + \sin(50^\circ + x)\sin(20^\circ + x)$	✓ $\cos[(50^\circ + x) - (20^\circ + x)]$
	$= \cos[(50^\circ + x) - (20^\circ + x)]$ = $\cos 30^\circ$ = $\frac{\sqrt{3}}{2}$	$\checkmark \cos[(30 + x) - (20 + x)]$ $\checkmark \cos 30^{\circ}$ $\checkmark \frac{\sqrt{3}}{2}$ (3)
2.2.2	$\frac{2}{\cos(-140^{\circ})\cos 740^{\circ} - \sin 140^{\circ}\sin(-20^{\circ})}$ = $\cos 140^{\circ}\cos 20^{\circ} - (\sin 40^{\circ})(-\sin 20^{\circ})$ = $(-\cos 40^{\circ})(\cos 20^{\circ}) + \sin 40^{\circ}\sin 20^{\circ}$ = $-\cos 40^{\circ}\cos 20^{\circ} + \sin 40^{\circ}\sin 20^{\circ}$ = $-(\cos 40^{\circ}\cos 20^{\circ} - \sin 40^{\circ}\sin 20^{\circ})$ = $-\cos 60^{\circ}$	$ \begin{array}{rcl} \checkmark & -\cos 40^{\circ} \\ \checkmark & \cos 20^{\circ} \\ \checkmark & \sin 40^{\circ} \\ \checkmark & -\sin 20^{\circ} \\ \checkmark & -\cos 60^{\circ} \\ \checkmark & -\frac{1}{2} \\ \end{array} $ (6)
	$=-\frac{1}{2}$	[23]

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS

SESSION 9

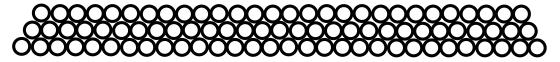
(TEACHER NOTES)

CONSOLIDATION

Note to Teachers: Encourage learners to complete each section in the time allocated. 80 minutes is allocated to doing questions. Learners need to check solutions on their own.

TOPIC 1: NUMBER PATTERNS, SEQUENCES AND SERIES

GRADE 12


SECTION A: TYPICAL EXAM QUESTIONS

QUESTION 1: 25 minutes

- 1.1 Consider the following sequence: $\frac{3}{2}$; $\frac{5}{4}$; $\frac{7}{8}$; $\frac{9}{16}$;
 - 1.1.1 Write down the next two terms of the sequence. (2)
 - 1.1.2 Determine the *n*th term of the sequence in simplified form. (5)
- 1.2 By using appropriate formulae and without using a calculator, calculate the value of the following:

1.2.1	$\sum_{k=2}^{8} \left(\frac{1}{2}\right)^{k-1}$	(4)
1.2.2	$\sum_{k=2}^{\infty} \left(\frac{1}{2}\right)^{k-1}$	(2)

1.3 In the figure below, a stack of cans is shown. There are 30 cans in the first layer, 29 cans in the second layer (lying on top of the first layer), 28 cans in the third layer. This pattern of stacking continues.

Determine the maximum number of cans that can be stacked in this way.

(4) [17]

QUESTION 2: 15 minutes

Consider the sequence: $3; a; 10; b; 21; \dots$

The sequence has a constant second difference of 1.

- 2.1 Determine the value of *a* and *b*.
- 2.2 Determine the *n*th term of the sequence.
- 2.3 Hence, prove that the sum of any two consecutive numbers in the sequence equals a square number. (4)
 - [13]

(4)

(5)

MATHEMATICS GRADE 12 SESSION 9

(TEACHER NOTES)

TOPIC 2: FINANCIAL MATHEMATICS

SECTION A: TYPICAL EXAM QUESTIONS

QUESTION 1: 40 minutes

1.1	A motor car costing R200 000 depreciated at a rate of 8% per annum on the reducing balance method. Calculate how long it took for the car to depreciate to f R90 000 under these conditions.	(4)
1.2	Mpho starts a five year savings plan. At the beginning of the month he deposits R2000 into the account and makes a further deposit of R2000 at the end of that month. He then continues to make month end payments of R2000 into the account for the five year period (starting from his first deposit). The interest rate is 6% per annum compounded monthly.	
	1.2.1 Calculate the future value of his investment at the end of the five year period.	(4)
	1.2.2 Due to financial difficulty, Mpho misses the last two payments of R2000. What will the value of his investment now be at the end of the five year period?	(4)
1.3	Lucy takes out a twenty year loan of R400 000. She repays the loan by means of equal monthly payments starting one month after the granting of the loan. The interest rate is 18% per annum compounded monthly.	
	1.3.1 Calculate the monthly repayments.	(3)
	1.3.2 Calculate the amount owed after the 3 rd payment was made.	(2)
	1.3.3 Due to financial difficulty, Brenda misses the 4 th , 5 th and	
	6 th payments. Calculate her increased monthly payment which comes into effect from the 7 th payment onwards.	(4) [21]
		_

SECTION B: SOLUTIONS AND HINTS TO SECTION A

1. TOPIC 1: NUMBER PATTERNS, SEQUENCES AND SERIES

QUESTION 1

1.1.1	11 13	✓ ✓ answers
	$\overline{32}; \overline{64}$	(2)

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATI	CS GRADE 12 SESSION 9	(TEACHER NOTES)
1.1.2	The numerators represent an arithmetic sequence: $T_n = 3 + (n-1)(2)$ $\therefore T_n = 3 + 2n - 2$ $\therefore T_n = 2n + 1$ The denominators represent a geometric sequence: $T_n = (2)(2)^{n-1}$ $\therefore T_n = 2^n$ The general term for the given sequence is: $T_n = \frac{2n+1}{2^n}$	✓ $a=3$ and $d=2$ ✓ $T_n = 2n+1$ ✓ $a=2$ and $r=2$ ✓ $T_n = 2^n$ ✓ $T_n = \frac{2n+1}{2^n}$ (5)
1.2.1	$\sum_{k=2}^{8} \left(\frac{1}{2}\right)^{k-1} = \left(\frac{1}{2}\right)^{1} + \left(\frac{1}{2}\right)^{2} + \left(\frac{1}{2}\right)^{3} + \dots + \left(\frac{1}{2}\right)^{7}$ $\therefore \mathbf{S}_{7} = \frac{\left(\frac{1}{2}\right) \left(1 - \left(\frac{1}{2}\right)^{7}\right)}{1 - \frac{1}{2}} = 1 - \left(\frac{1}{2}\right)^{7} = 1 - \frac{1}{128} = \frac{127}{128}$	✓ expansion ✓ correct formula ✓ correct substitution ✓ $\frac{127}{128}$ (4)
1.2.2	$\sum_{k=2}^{\infty} \left(\frac{1}{2}\right)^{k-1} = \left(\frac{1}{2}\right)^{1} + \left(\frac{1}{2}\right)^{2} + \left(\frac{1}{2}\right)^{3} + \dots$ $\therefore S_{\infty} = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1$	 ✓ correct formula ✓ answer (2)
1.3	The layers are stacked as follows: $30; 29; 28; 27; \dots, 1$ This forms an arithmetic sequence. $\therefore S_{30} = \frac{30}{2} [2(30) + (30-1)(-1)]$ $\therefore S_{30} = 465$ There are a maximum of 465 cans that can be stacked in this way.	 ✓ 30; 29; 28; 27;; 1 ✓ correct formula ✓ correct substitution ✓ 465 cans (4) [17]

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS

GRADE 12

SESSION 9

(TEACHER NOTES)

QUESTION 2

0.4		
2.1	3; <i>a</i> ;10; <i>b</i> ;21;	\checkmark (10-a)-(a-3)=1
	(10-a)-(a-3)=1	✓ $a = 6$ ✓ $(21-b) - (b-10) = 1$
	$\therefore 10 - a - a + 3 = 1$	\checkmark (21- <i>b</i>)-(<i>b</i> -10)=1 \checkmark <i>b</i> =15
	$\therefore -2a = -12$	$\mathbf{v} b = 13 \tag{4}$
	$\therefore a = 6$	
	(21-b)-(b-10)=1	
	$\therefore 21 - b - b + 10 = 1$	
	$\therefore -2b = -30$	
	$\therefore b = 15$	
2.2	3;6;10;15;21;	✓ 3;6;10;15;21;
	2a = 1	$\checkmark a - \frac{1}{2}$
	1	$\frac{1}{2}$
	$\therefore a = \frac{1}{2}$	$\checkmark b = \frac{3}{2}$
	3a+b=3	$\checkmark a = \frac{1}{2}$ $\checkmark b = \frac{3}{2}$ $\checkmark c = 1$
	(1) + 2(1) + b = 2	$\mathbf{v} = 1$
	$\therefore 3\left(\frac{1}{2}\right) + b = 3$	$\checkmark T_n = \frac{1}{2}n^2 + \frac{3}{2}n + 1$
	$\therefore b = \frac{3}{2}$ $a+b+c=3$	(5)
	a+b+c=3	
	$\therefore \frac{1}{2} + \frac{3}{2} + c = 3$	
	$\therefore c = 1$	
	$\therefore T_n = \frac{1}{2}n^2 + \frac{3}{2}n + 1$	
2.3	$\left(\frac{1}{2}n^2 + \frac{3}{2}n + 1\right) + \left(\frac{1}{2}(n+1)^2 + \frac{3}{2}(n+1) + 1\right)$	✓ $T_n + T_{n+1}$ ✓ expanding
	$= \frac{1}{2}n^{2} + \frac{3}{2}n + 1 + \frac{1}{2}(n^{2} + 2n + 1) + \frac{3}{2}n + \frac{3}{2} + 1$	✓ $n^2 + 4n + 4$ ✓ $(n+2)^2$
	$= \frac{1}{2}n^{2} + \frac{3}{2}n + 1 + \frac{1}{2}n^{2} + n + \frac{1}{2} + \frac{3}{2}n + \frac{3}{2} + 1$	(4)
	$= n^2 + 4n + 4$	
	$=(n+2)^2$	
	·	[13]

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICSGRADE 12SESSION 9(TEACHER NOTES)

TOPIC 2: FINANCIAL MATHEMATICS

QUESTION 1

1.1	A = P(1-i) ⁿ ∴ 90 000 = 200 000(1-0,08) ⁿ ∴ 90 000 = 200 000(0,92) ⁿ ∴ $\frac{90\ 000}{200\ 000} = (0,92)^n$ ∴ 0,45 = (0,92) ⁿ ∴ $\log_{0,92} 0,45 = n$ ∴ n = 9,576544593 It will take approximately 9 years 7 months to depreciate to R90 000.	 ✓ correct formula ✓ correct substitution ✓ use of logs ✓ value of n (4)
1.2.1	$F = \frac{2000 2000 2000 2000 2000 2000}{T_0 T_1 T_2 T_3 T_{60}}$ $F = \frac{2000 \left[\left(1 + \frac{0,06}{12} \right)^{61} - 1 \right]}{\frac{0,06}{12}}$ ∴ F = R142 237,76	✓ correct formula ✓ $\frac{0,06}{12}$ ✓ value of <i>n</i> ✓ answer (4)
1.2.2	$F = \frac{2000 2000 2000 2000 2000 2000 F}{T_0 T_1 T_2 T_3 T_{58} T_{59} T_{60}}$ $= \frac{2000 \left[\left(1 + \frac{0,06}{12} \right)^{59} - 1 \right]}{\frac{0,06}{12}} \cdot \left(1 + \frac{0,06}{12} \right)^2$ $\therefore F = R138 \ 227,76$	✓ correct annuity formula ✓ $n = 59$ ✓ $\left(1 + \frac{0,06}{12}\right)^2$ ✓ answer (4)

MATHEMATICS

GRADE 12

SESSION 9

1.3.1	400000 $\begin{array}{cccccccccccccccccccccccccccccccccccc$	 ✓ formula ✓ correct substitution ✓ answer (3)
	$400\ 000 = \frac{x \left[1 - \left(1 + \frac{0,18}{12}\right)^{-240}\right]}{\frac{0,18}{12}}$	
	$\therefore \frac{400\ 000 \times \frac{0.18}{12}}{\left[1 - \left(1 + \frac{0.18}{12}\right)^{-240}\right]} = x$ $\therefore x = R6173,25$	
1.3.2	B = $\frac{6173,25[1-(1,015)^{-237}]}{0,015}$ ∴ B = R399 472,68	✓ correct substitution✓ answer(2)
1.3.3	$399 \ 472,68 \left(1 + \frac{0,18}{12}\right)^3 = \frac{x \left[1 - \left(1 + \frac{0,18}{12}\right)^{-234}\right]}{\frac{0,18}{12}}$ $\therefore \frac{399 \ 472,68 \left(1 + \frac{0,18}{12}\right)^3 \times \frac{0,18}{12}}{\left[1 - \left(1 + \frac{0,18}{12}\right)^{-234}\right]} = x$ $\therefore x = R6464,16$	✓ 399 472,68 $\left(1+\frac{0,18}{12}\right)^3$ ✓ present value formula ✓ $n = 234$ ✓ answer (4)
		[21]

MATHEMATICS

GRADE 12

SESSION 9

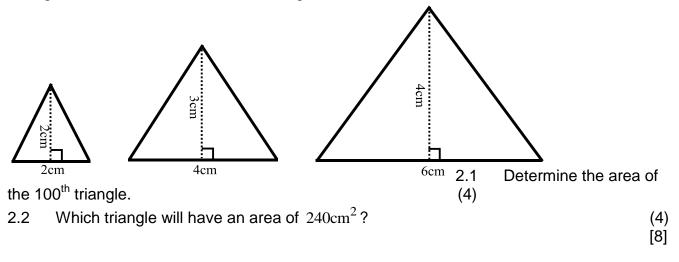
(TEACHER NOTES)

SECTION C: HOMEWORK

TOPIC 1: NUMBER PATTERNS, SEQUENCES AND SERIES

QUESTION 1

1.1 Calculate the value of


$$\sum_{n=3}^{17} 10$$
 (1)

- 1.2 An auditorium has 30 rows of seats. There are 20 seats in the first row and 136 seats in the last row. The number of seats in the first row, second row, third row and so forth forms an arithmetic sequence.
 1.2.1 Determine the number of seats in the second row.
 1.2.2 Determine the total number of seats in the auditorium.
 1.3 The sequence 12; *x*; is a convergent geometric sequence in which the sum to infinity is equal to 24.
 1.3.1 Determine the value of *x*.
 - 1.3.2 Hence determine which term of the sequence is equal to $\frac{3}{128}$. (3)

[11]

QUESTION 2

A sequence of isosceles triangles is drawn. The first triangle has a base of 2cm and height of 2cm. The second triangle has a base that is 2cm longer than the base of the first triangle. The height of the second triangle is 1cm longer than the height of the first triangle. This pattern of enlargement will continue with each triangle that follows.

GAUTENG DEPARTMENT OF EDUCATION		SENIOR SECONDARY INTERVENTION PROGRAMME	
MATHEMATICS	GRADE 12	SESSION 9	(TEACHER NOTES)

TOPIC 2: FINANCIAL MATHEMATICS

QUESTION 1

- 1.1 Joshua takes out a retirement annuity that will supplement his pension when he retires in thirty years' time. He estimates that he will need R3000 000 in this retirement fund at that stage. The interest rate he earns is 12% per annum compounded monthly. Calculate his monthly payment into this fund if he starts paying immediately and makes his final payment in 20 years' time. (3)
- 1.2 Mpho takes out a bank loan for R250 000. The interest rate charged by the bank is 18,5% per annum compounded monthly.
 - 1.2.1 What will his monthly repayment be if he pays the loan back over five years, starting **FOUR** months after the granting of the loan?
 - 1.2.2 Calculate the balance outstanding after the 25th repayment. (5)
 - [13]

(5)

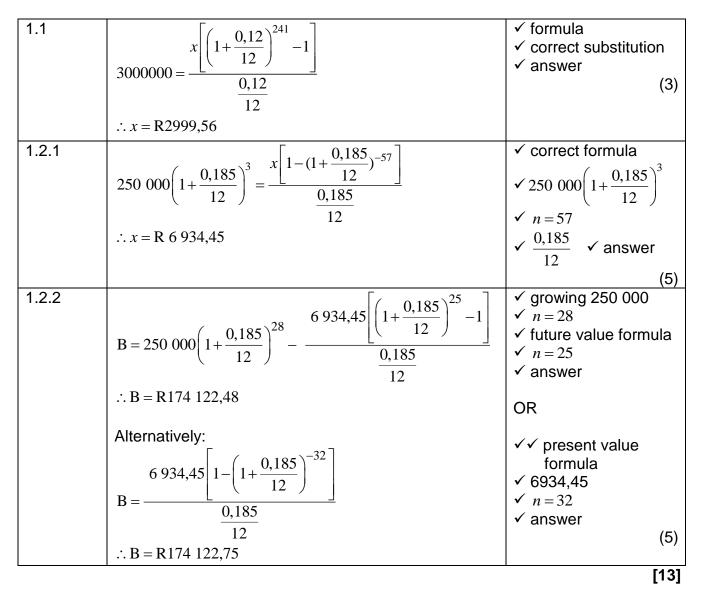
SECTION D: SOLUTIONS AND HINTS TO HOMEWORK

TOPIC 1: NUMBER PATTERNS, SEQUENCES AND SERIES

1.1	$\sum_{r=3}^{17} 10 = (\text{number of terms}) \times 10$ = (17-3+1)×10 = 15×10 = 150	✓ 150 (1)
1.2.1	a = 20 a + (n-1)d = 136 ∴ 20 + (30-1)d = 136 ∴ 20 + 29d = 136 ∴ 29d = 116	✓ $a = 20$ ✓ $20 + 29d = 136$ ✓ $d = 4$ ✓ 24 seats in second row ✓ $S_{30} = 2340$ (4)
1.2.2	$\therefore d = 4$ There are 24 seats in the second row.	$\checkmark S_{30} = 2340$
	$S_{30} = \frac{30}{2} [20 + 136] = 2340$ seats	(1)

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATIC	S	GRADE 12	SESSION 9	(TEACHER NO	DTES)
1.3.1	$r = \frac{x}{12}$			$\checkmark r = \frac{x}{12}$	
	$r = \frac{x}{12}$ $\frac{12}{1 - \frac{x}{12}} = 24$			$\checkmark r = \frac{x}{12}$ $\checkmark \frac{12}{1 - \frac{x}{12}} = 24$ $\checkmark x = 6$	
	$\therefore 12 = 24 \left(1 - \frac{1}{2} \right)$ $\therefore 12 = 24 - 2$	<i>,</i>		$\checkmark x = 6$	(3)
	$\therefore 12 = 24 = 2.$ $\therefore 2x = 12$ $\therefore x = 6$	ſ			
	$12\left(\frac{1}{2}\right)^{n-1} = \frac{1}{1}$			$\checkmark 12 \left(\frac{1}{2}\right)^{n-1} = \frac{3}{128}$	
	$\left(\frac{1}{2}\right)^{n-1} = \frac{1}{5}$			$\checkmark \left(\frac{1}{2}\right)^{n-1} = \frac{1}{512}$ $\checkmark n = 10$	
	$\left(\frac{1}{2}\right)^{n-1} = \left(\frac{1}{2}\right)^{n-1} = \left($	$\left(\frac{1}{2}\right)^9$		\bullet $n = 10$	(3)
	$\therefore n - 1 = 9$ $\therefore n = 10$				[12]


2.1	Area of triangle 1:	$\frac{1}{2}(2cm)(2cm) = (1)(2)cm^2$	 ✓ determining areas ✓ establishing pattern
	Area of triangle 2:	$\frac{1}{2}(4cm)(3cm) = (2)(3)cm^2$	 ✓ obtaining general term ✓ area of 100th triangle
	Area of triangle 3:	$\frac{1}{2}(6cm)(4cm) = (3)(4)cm^2$	(4)
	Area of triangle 4:	$\frac{1}{2}(8cm)(5cm) = (4)(5)cm^2$	
	The areas form the $(1)(2);(2)(3);(3)(4);(4)$		
	Area of triangle <i>n</i> :	$(n)(n+1)cm^2$	
	Area of triangle 100:	$(100)(100+1)cm^2 = 10100cm^2$	

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATIC	S GRADE 12	SESSION 9	(TEACHER NOTES	3)
2.2	n(n+1) = 240 $\therefore n^2 + n - 240 = 0$ $\therefore (n+16)(n-15) = 0$ $\therefore n = -16$ or $n = 15$		✓ correct <i>a</i> and <i>d</i> ✓ correct <i>n</i> ✓ S_n formula ✓ correct answer	
	But $n \neq -16$ $\therefore n = 15$	2		4)
	The 15th triangle will have an area	a of 240 cm ²		8]

TOPIC 2: FINANCIAL MATHEMATICS

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS

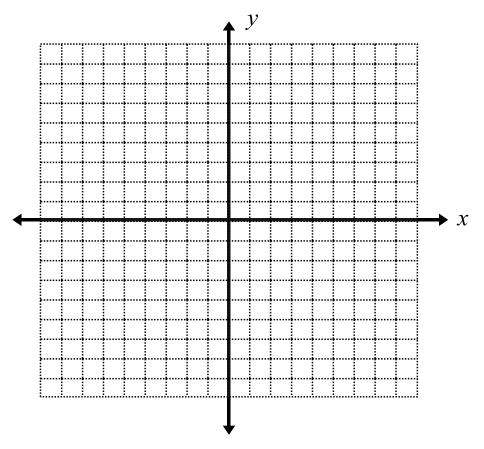
GRADE 12

SESSION 10

(TEACHER NOTES)

TOPIC : TRANSFORMATIONS

Teacher note: Transformations are easy to master and learners should score well in questions involving this topic. Ensure that they know the different algebraic transformation rules.


LESSON OVERVIEW

- 1. Introduction session: 5 minutes
- Typical exam questions: Question 1: 30 minutes Question 2: 10 minutes
 Discussion of solutions 45 minutes
- 3. Discussion of solutions 45 minutes

SECTION A: TYPICAL EXAM QUESTIONS

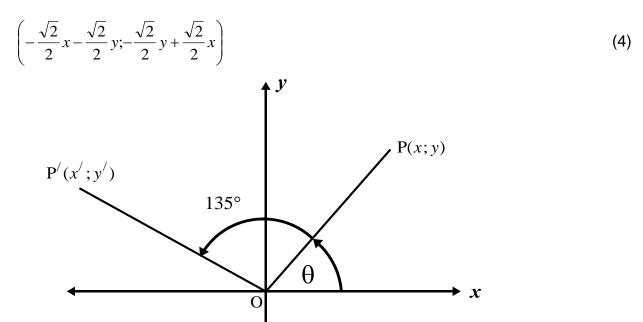
QUESTION 1 30 minutes 16 marks

1.1 On the diagram below, represent the point A(-3;2).

1.2 Now represent the following points on the diagram provided above: Point B, the rotation of point A, **90**° anticlockwise about the origin. Point C, the rotation of point A, **180**° about the origin. Point D, the rotation of point A, **90**° clockwise about the origin.

Page 76 of 123

(3)


GAUTENG DEPARTMENT OF EDUCATION	SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS	GRADE 12	SESSION 10	(TEACHER NOTES)
-------------	----------	------------	-----------------

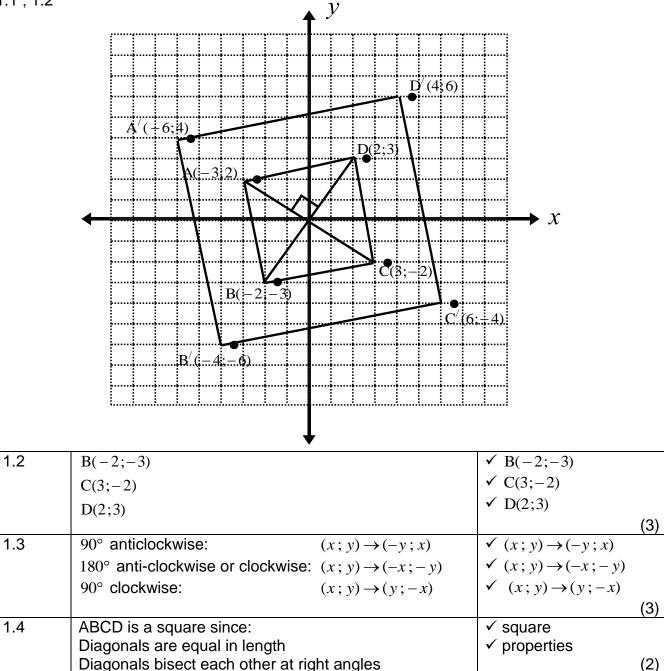
1.3 Write down algebraic rules to describe the above transformations. (3) 1.4 What type of quadrilateral is figure ABCD? Explain by referring to the properties of quadrilaterals. (2) Figure **ABCD** is enlarged by a scale factor of 2 units through the origin to form its 1.5 image $\mathbf{A}'\mathbf{B}'\mathbf{C}'\mathbf{D}'$. On the diagram provided on the previous page, sketch the image A'B'C'D' and indicate the coordinates of the vertices. (2) Determine the ratio: $\frac{\text{Area ABCD}}{\text{Area A'B'C'D'}}$ 1.6 (1) 1.7 ABCD is reflected about the y-axis to form its image EFGH. 1.7.1 Write down the coordinates of E. (1) **Perimeter ABCD** 1.7.2 Determine the ratio: (1) Perimeter EFGH Describe, using words and algebraic notation, the single transformations involved if 1.8 figure **ABCD** is transformed by the rule: $(x;y) \rightarrow \left(\frac{1}{2}x; -\frac{1}{2}y-1\right)$ (3)

QUESTION 2 10 minutes 6 marks

2.1 Show that the coordinates of \mathbf{P}^{\prime} , the image of $\mathbf{P}(x; y)$ rotated about the origin through an angle of 135°, in the anti-clockwise direction, is given by:

2.2 M' is the image of M(2;4) under a rotation about the origin through 135°, in the anticlockwise direction.

MATHEMATICSGRADE 12SESSION 10(TEACHER NOTES)


Determine the coordinates of \mathbf{M}' , using the results in (a)

(2)

SECTION B: SOLUTIONS AND HINTS TO SECTION A

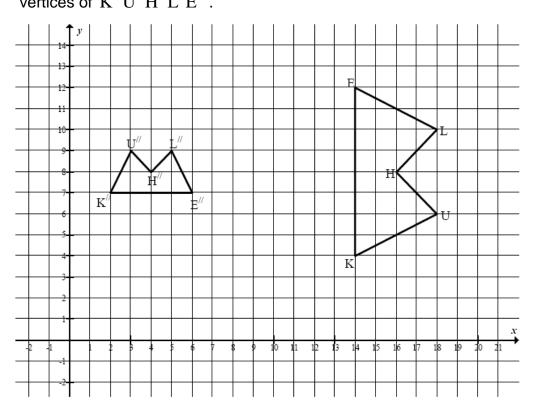
QUESTION 1

1.1 ; 1.2

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMAT	ICS GRADE 12 SESSION 10	(TEACHER NOTES	3)
1.5	$A^{/}(-6;4)$ $B^{/}(-4;-6)$ $C^{/}(6;-4)$ $D^{/}(4;6)$ See diagram	 ✓ correct coordinates indicated ✓ joining points to form enlarged square 	(2)
1.6	$\frac{\text{Area ABCD}}{\text{Area A}'\text{B}'\text{C}'\text{D}'} = \frac{1}{2^2} = \frac{1}{4}$	$\checkmark \frac{1}{4}$ (1)
1.7.1	E(3;2)	✓ answer (1)
1.7.2	$\frac{\text{Perimeter ABCD}}{\text{Perimeter EFGH}} = \frac{4 \times \text{side AB}}{4 \times \text{side EF}} = 1$ (since AB = EF)	✓ answer (*	1)
1.8	$(x; y) \rightarrow \left(\frac{1}{2}x; \frac{1}{2}y\right) \text{reduction by a factor of } \frac{1}{2}$ $\left(\frac{1}{2}x; \frac{1}{2}y\right) \rightarrow \left(\frac{1}{2}x; -\frac{1}{2}y\right) \text{reflection about } x - \text{axis}$ $\left(\frac{1}{2}x; -\frac{1}{2}y\right) \rightarrow \left(\frac{1}{2}x; -\frac{1}{2}y - 1\right) \text{translation 1 unit downward}$ $\therefore (x; y) \rightarrow \left(\frac{1}{2}x; -\frac{1}{2}y - 1\right)$		3)
		[10	6]

2.1	$x' = x\cos(135^\circ) - y\sin(135^\circ)$	$\checkmark x' = x\cos(135^\circ) - y\sin(135^\circ)$
	$x' = -x\cos 45^\circ - y\sin 45^\circ$	$\checkmark x' = -\frac{\sqrt{2}}{2}x - \frac{\sqrt{2}}{2}y$
	$x' = x \left(\frac{-\sqrt{2}}{2}\right) - y \left(\frac{\sqrt{2}}{2}\right)$	$\checkmark y' = y \cos(135^\circ) + x \sin(135^\circ)$
	$x' = -\frac{\sqrt{2}}{2} x - \frac{\sqrt{2}}{2} y$	$\checkmark y' = -\frac{\sqrt{2}}{2}y + \frac{\sqrt{2}}{2}x$ (4)
	$y' = y\cos(135^\circ) + x\sin(135^\circ)$	
	$y' = -y\cos 45^\circ + x\sin 45^\circ$	
	$y' = y\left(-\frac{\sqrt{2}}{2}\right) + x\left(\frac{\sqrt{2}}{2}\right)$	
	$y' = -\frac{\sqrt{2}}{2}y + \frac{\sqrt{2}}{2}x$	

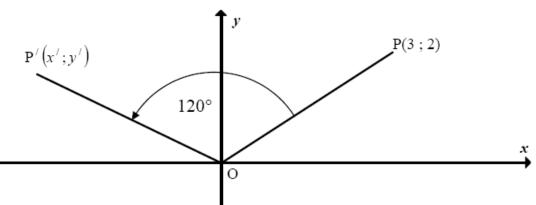

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMAT	ICS	GRADE 12	SESSION 10	(TEACHER NOTES)
2.2	$x' = -\frac{\sqrt{2}}{2}(2) - \frac{\sqrt{2}}{2}(2) - \frac{\sqrt{2}$	2		
	$y' = -\sqrt{2}$ $\therefore \mathbf{M}(-3\sqrt{2}; -\sqrt{2})$	2)		[6]

SECTION C: HOMEWORK

QUESTION 1

- 1.1 The point P(-2;5) lies in a Cartesian plane. Determine the coordinates of P', the image of P if:
 - 1.1.1 P is reflected about the line y = x
 - 1.1.2 P has been rotated about the origin through 90° in a clockwise direction. (2)
- 1.2 KUHLE has undergone two transformations to obtain K''U''H''L''E''. K''(2;7), U''(3;9), H''(4;8), L''(5;9) and E''(6;7) are the coordinates of the vertices of K''U''H''L''E''.



(1)

GAUTENG DEPARTMENT OF EDUCATION		SENIOR SECOND	ARY INTERVENTION PROGRAMME		
MATH	EMATICS		GRADE 12	SESSION 10	(TEACHER NOTES)
1.2.1	to obtain	K ^{//} U ^{//} I	H''L''E''	·	e order which they occurred), (4)
		rite down st transfor		sets of coordinates for	$^{\cdot}$ H [/] , the image of H after the (2)
	1.2.3 D	etermine:	$\frac{\text{Area KUHI}}{\text{Area K}^{//}\text{U}^{//}\text{H}^{//}}$	$\frac{\mathbf{LE}}{\mathbf{U}_{\mathbf{L}}^{\prime\prime\prime}\mathbf{E}_{\mathbf{L}}^{\prime\prime\prime}}$	(2)

QUESTION 2

- 2.1 The point P(3; 2) is rotated about the origin through an angle of 120° in an anticlockwise direction. Determine x' and y', the coordinates of P. (6)
- 2.2 The same rotation sends a point Q into (-2; 0). Determine the coordinates of Q, (4)

[10]

[11]

SECTION D: SOLUTIONS TO HOMEWORK SESSION 6

1.1.1	P'(5;-2)	✓ answer	1)
1.1.2	P'(5;2)	✓ <i>x</i> -coordinate ✓ <i>y</i> -coordinate	,
		(2)
1.2.1	Reduction by a scale factor of $\frac{1}{2}$:	 ✓ ✓ reduction ✓ ✓ reflection 	
	$(x; y) \rightarrow \left(\frac{1}{2}x; \frac{1}{2}y\right)$	(4)
	Reflection about the line $y = x$		
	$\left(\frac{1}{2}x;\frac{1}{2}y\right) \rightarrow \left(\frac{1}{2}y;\frac{1}{2}x\right)$		
	$\therefore (x; y) \rightarrow \left(\frac{1}{2}y; \frac{1}{2}x\right)$		

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEN	IATICS GRADE 12 SESSIO	N 10 (TEACHER NOTES)
1.2.2	If the first transformation is the reflection, then: $H^{/}(8;16)$ If the first transformation is the reduction, then: $H^{/}(8;4)$	\checkmark H ^(8,10) \checkmark H ^(8,4)
1.2.3	$\frac{\text{Area of original}}{\text{Area of image}} = \frac{1}{k^2}$ $\therefore \frac{\text{Area KUHLE}}{\text{Area K}'' U'' H'' L'' E''} = \frac{1}{\left(\frac{1}{2}\right)^2} = 4$	√√ answer (2)
	: Area KUHLE": Area $K^{//}U^{//}H^{//}L^{//}E^{//} = 4:1$	[11]

2.1	$A'(x\cos\theta - y\sin\theta; y\cos\theta + x\sin\theta)$	 ✓ formula ✓ simplification
	$x' = x\cos\theta - y\sin\theta$	✓ substitution
	$\therefore x' = 3\cos 120^\circ - 2\sin 120^\circ$	✓ answer✓ simplification
	$\therefore x' = 3(-\cos 60^\circ) - 2\sin 60^\circ$	✓ answer
	$\therefore x' = -3\left(\frac{1}{2}\right) - 2\left(\frac{\sqrt{3}}{2}\right)$	(6)
	$\therefore x' = \frac{-3 - 2\sqrt{3}}{2}$	
	$y' = y\cos\theta + x\sin\theta$	
	$\therefore x' = 2\cos 120^\circ + 3\sin 120^\circ$	
	$\therefore y' = 2(-\cos 60^\circ) + 3\sin 60^\circ$	
	$\therefore y' = -2\left(\frac{1}{2}\right) + 3\left(\frac{\sqrt{3}}{2}\right)$	
	$\therefore y' = \frac{-2 + 3\sqrt{3}}{2}$	

SENIOR SECONDARY INTERVENTION PROGRAMME

GRADE 12

SESSION 10

(TEACHER NOTES)

2.2	$Q(x; y) \rightarrow Q'(-2; 0)$	$\checkmark -2 = x \left(-\frac{1}{2} \right) - y \left(\frac{\sqrt{3}}{2} \right)$
	$\therefore \mathbf{Q}(x; y) \rightarrow \mathbf{Q}^{\prime} \left(x \cos 120^{\circ} - y \sin 120^{\circ}; y \cos 120^{\circ} + x \sin 120^{\circ} \right)$	$-2 = x \left(-\frac{1}{2}\right)^{-y} \left(-\frac{1}{2}\right)$
	$-2 = x\cos 120^\circ - y\sin 120^\circ$ and $0 = y\cos 120^\circ + x\sin 120^\circ$	$\checkmark 0 = y\left(-\frac{1}{2}\right) + x\left(\frac{\sqrt{3}}{2}\right)$
	$-2 = x\left(-\frac{1}{2}\right) - y\left(\frac{\sqrt{3}}{2}\right) \text{and} 0 = y\left(-\frac{1}{2}\right) + x\left(\frac{\sqrt{3}}{2}\right)$	
		 ✓ x-coordinate ✓ y-coordinate
	$\therefore -4 = -x - \sqrt{3}y \qquad \text{and} \qquad 0 = -y + \sqrt{3}x$	(4)
	$\therefore 4 = x + \sqrt{3}y$ and $y = \sqrt{3}x$	
	$\therefore 4 = x + \sqrt{3}(\sqrt{3}x)$	
	$\therefore 4 = x + 3x$	
	$\therefore 4 = 4x$ $\therefore x = 1$	
	$\therefore y = \sqrt{3}(1) = \sqrt{3}$	
	$\therefore \mathbf{Q}(1; \sqrt{3})$	
		[10]

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS GRADE 12

SESSION 11

(TEACHER NOTES)

TOPIC : FUNCTIONS AND GRAPHS

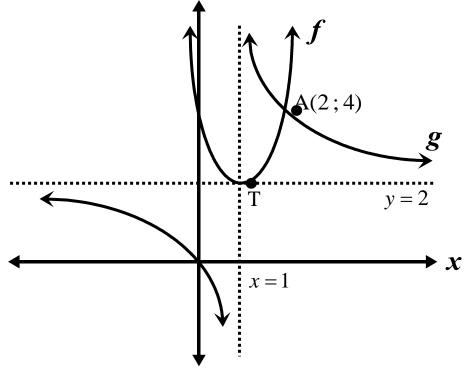
Teacher Note: Functions form a large part of Paper 1 and learners should score well in questions involving this topic. Ensure that they know how to link transformation rules to these graphs.

LESSON OVERVIEW

1. Introduction session: 5 minutes

2.	Typical exam questions:	
	Question 1:	20 minutes
	Question 2:	20 minutes
3	Discussion of solutions	15 minutes

Discussion of solutions 45 minutes


SECTION A: TYPICAL EXAM QUESTIONS

QUESTION 1: 20 minutes

In the diagram, the graphs of the following functions have been sketched:

$$f(x) = a(x+p)^2 + q$$
 and $g(x) = \frac{a}{x+p} + q$

The two graphs intersect at A(2; 4) and the turning point of the parabola lies at the point of intersection of the asymptotes of the hyperbola. The line x = 1 is the axis of symmetry of the parabola.

1.1 Determine the equation of f(x) in the form $y = a(x+p)^2 + q$ (3)

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS

1.2

EMATICS	GRADE 12	SESSION 11	(TEACHER NOTES)
Determine the equation	on of $g(x)$ in the fo	$\operatorname{rm} y = \frac{a}{x+p} + q$	(3)

(1)

(2) [11]

(1)

1.3 Write down the range for the graph of *f*.

1.4 If the graph of f is shifted 1 unit left and 2 units downwards, write down the equation of the new graph formed. (2)

1.5 Write down the values of x for which $g(x) \le 0$

QUESTION 2: 20 minutes

Given: $f(x) = 2(x-1)^2 - 8$ and $h(x) = 4^x$

- Sketch the graphs of h and f on the diagram sheet provided. 2.1 Indicate ALL intercepts with the axes and any turning points. (9)
- 2.2 The graph of *f* is shifted 2 units to the LEFT. Write down the equation of the new graph.

Show, algebraically, that $h\left(x+\frac{1}{2}\right)=2h(x)$. 2.3 (3) [13]

SECTION B: SOLUTIONS AND HINTS TO SECTION A

1.1	For the graph of $f(x) = a(x+p)^2 + q$ Substitute the turning point T(1; 2):	✓ $y = a(x-1)^2 + 2$ ✓ $a = 2$	
	$y = a(x-1)^2 + 2$	$\checkmark y = 2(x-1)^2 + 2$	
	Substitute the point $A(2;4)$:		(3)
	$4 = a(2-1)^2 + 2$ $\therefore 4 = a+2$		
	$\therefore 4 = a + 2$		
	$\therefore a = 2$		
	The equation of the parabola is therefore:		
	$y = 2(x-1)^2 + 2$		

SENIOR SECONDARY INTERVENTION PROGRAMME

SESSION 11

(TEACHER NOTES)

L		[11]
	$\therefore 0 \le x < 1$	(2)
1.5	$g(x) \le 0$	√ √ answers
		(2)
	$\therefore y = 2x^2$	$\checkmark y = 2x^2$
1.4	$y = 2((x+1)-1)^{2} + 2 - 2$	✓ adding 1 to x and subtracting 2
		(1)
1.3	Range: $y \in [2; \infty)$	✓ $y \in [2;\infty)$
	$y = \frac{2}{x-1} + 2$	
	The equation of the hyperbola is therefore:	
	$\therefore a = 2$	
	$\therefore 4 = a + 2$	
	$\therefore 4 = \frac{a}{2-1} + 2$	
	Substitute the point $A(2;4)$:	
	$\therefore y = \frac{a}{x-1} + 2$	(3)
		$\checkmark y = \frac{2}{x-1} + 2$
	The vertical asymptote is $x = 1$ and the horizontal asymptote is $y = 2$.	a = 2
	For the graph of $g(x) = \frac{a}{x+p} + q$	$\checkmark y = \frac{a}{x-1} + 2$ $\checkmark a = 2$
1.2	a	a

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS

GRADE 12

SESSION 11 (TEACHER NOTES)

2.1	$f(x) = 2(x-1)^{2} - 8$ Turning point: (1;-8) x-intercepts of parabola: $0 = 2(x-1)^{2} - 8$ $8 = 2(x-1)^{2}$ $4 = (x-1)^{2}$ 2 = x-1 or -2 = x-1 x = 3 or x = -1 y-intercept of parabola: $y = 2(0-1)^{2} - 8 = -6$ f (1;4) f (1;-8)	For $f(x) = 2(x-1)^2 - 8$ \checkmark turning point \checkmark shape \checkmark axis of symmetry \checkmark <i>y</i> -intercept $\forall \checkmark$ <i>x</i> -intercepts For $h(x) = 4^x$ \checkmark <i>y</i> -intercept \checkmark shape \checkmark coordinates (9)
2.2	y = 2(x-1+2) ² -8 ∴ y = 2(x+1) ² -8	✓ $y = 2(x+1)^2 - 8$ (1)
2.3	$h\left(x+\frac{1}{2}\right) = 4^{x+\frac{1}{2}} = 4^{x} \cdot 4^{\frac{1}{2}} = \left(4^{x}\right) \cdot 2 = 2h(x)$	✓ $4^{x+\frac{1}{2}}$ ✓ $4^{x}.4^{\frac{1}{2}}$ ✓ $(4^{x}).2 = 2h(x)$ [13]
		[I3]

SESSION 11

MATHEMATICS

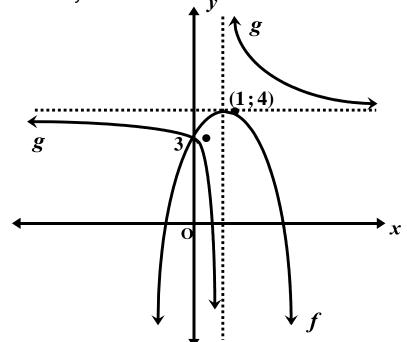
(TEACHER NOTES)

(4)

[12]

SECTION C: HOMEWORK

QUESTION 1


 $f(x) = \frac{2}{x+1}$ Given:

- 1.1 Write down the equations of the asymptotes.
- (2) 1.2 Sketch the graph of f indicating the coordinates of the y-intercept as well as the asymptotes. (4)
- 1.3 Write down the equation of the graph formed if the graph of f is shifted 3 units right and 2 units upwards. (2)
- Determine graphically the values of *x* for which $\frac{2}{x+1} \ge 1$ 1.4
- **QUESTION 2**

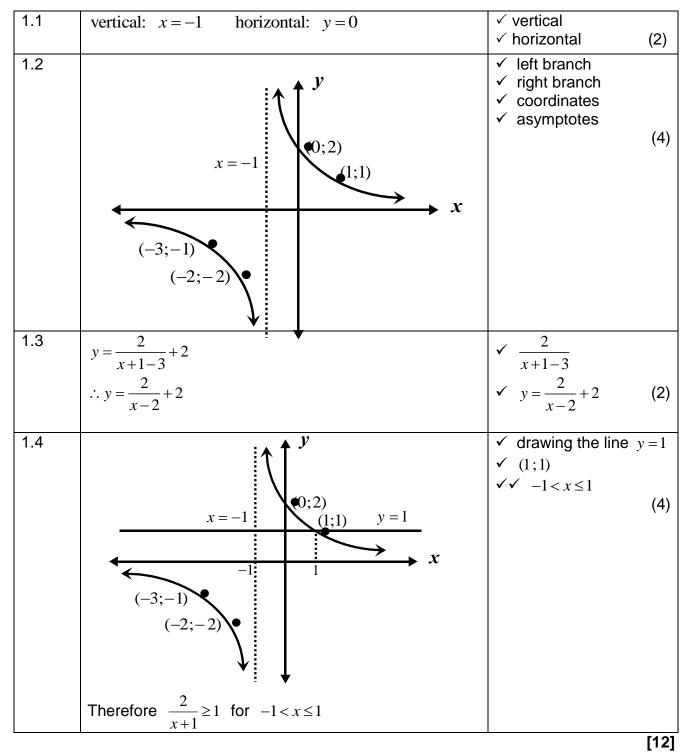
In the diagram below, the graphs of the following functions are represented:

 $f(x) = a(x+p)^2 + q$ and $g(x) = \frac{a}{x+p} + q$

The turning point of f is (1; 4) and the asymptotes of g intersect at the turning point of f. Both graphs cut the y-axis at 3.

2.1	Determine the equation of f.	(4)
2.2	Determine the equation of g.	(4)
2.3	Determine the coordinates of the x-intercept of g.	(3)
2.4	For which values of x will $g(x) \le 0$?	(2)
		[13]

SENIOR SECONDARY INTERVENTION PROGRAMME


MATHEMATICS

GRADE 12

SESSION 11

(TEACHER NOTES)

SECTION D: SOLUTIONS TO HOMEWORK

GRADE 12

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS

SESSION 11	(TEACHER NOTES)
323310111	(TEACHER NUTES

2.1	$y = a(x-1)^2 + 4$	$\checkmark y = a(x-1)^2 + 4$	
	y = u(x-1) + 4	$y = a(x-1)^{2} + 4$	
	Substitute (0;3)	$\checkmark 3 = a(0-1)^{-} + 4$	
	$3 = a(0-1)^2 + 4$	$\mathbf{v} a = -1$	
	$\therefore 3 = a + 4$	✓ $3 = a(0-1)^2 + 4$ ✓ $a = -1$ ✓ $f(x) = -(x-1)^2 + 4$	(4)
	$\therefore a = -1$		(4)
	$\therefore f(x) = -(x-1)^2 + 4$		
2.2	$y = \frac{a}{x-1} + 4$	$\checkmark \checkmark v = \frac{a}{4} + 4$	
	x-1	x-1	
	Substitute (0;3)	$\mathbf{v} a = 1$	
	$\therefore 3 = \frac{a}{0-1} + 4$	$\checkmark \checkmark y = \frac{a}{x-1} + 4$ $\checkmark a = 1$ $\checkmark g(x) = \frac{1}{x-1} + 4$	
		л I	(4)
	$\therefore 3 = -a + 4$		
	$\therefore a = 1$		
	$\therefore g(x) = \frac{1}{x-1} + 4$ $0 = \frac{1}{x-1} + 4$		
2.3	$\lambda = 1$. 1	
	$0 = \frac{1}{x-1} + 4$	$\checkmark 0 = \frac{1}{x-1} + 4$ $\checkmark x = \frac{3}{4}$ $\checkmark \left(\frac{3}{4}; 0\right)$	
	$\therefore 0 = 1 + 4(x - 1)$	$\sqrt{r-\frac{3}{2}}$	
	$\therefore 0 = 1 + 4x - 4$	$x = \frac{1}{4}$	
	$\therefore 0 = 4x - 3$	$\checkmark \left(\frac{3}{-};0\right)$	
	$\therefore -4x = -3$	(4)	$\langle \mathbf{O} \rangle$
	3		(3)
	$\therefore x = \frac{3}{4}$		
	$\left(\frac{3}{4};0\right)$		
2.4	$g(x) \le 0$ for $0 \le x < \frac{3}{4}$	$\checkmark x \ge 0$ $\checkmark x < \frac{3}{4}$	
	4	$\checkmark x < \frac{3}{4}$	
		4	(2)
L	1		[13]

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS

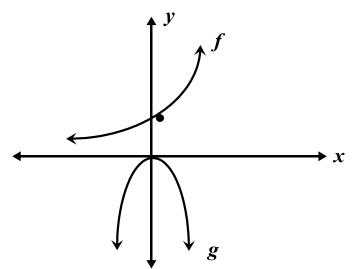
GRADE 12

SESSION 12

(TEACHER NOTES)

TOPIC : INVERSE GRAPHS

Teacher Note: Functions form a large part of Paper 1 and learners should score well in questions involving this topic. Ensure that they know how to link transformation rules to these graphs.


LESSON OVERVIEW

- Introduction session 5 minutes
 Typical exam questions:
- 2. Typical examplestions. Question 1: 40 minutes 3. Discussion of solutions 45 minutes

SECTION A: TYPICAL EXAM QUESTIONS

QUESTION 1: 40 minutes

Sketched below are the graphs of $f(x) = 3^x$ and $g(x) = -x^2$

1.1 Write down the equation of the inverse of the graph of $f(x) = 3^x$ in the form $f^{-1}(x) = \dots$

- 1.2 On a set of axes, draw the graph of the inverse of $f(x) = 3^x$ (2)
- 1.3 Write down the domain of the graph of $f^{-1}(x)$ (1)
- 1.4 Explain why the inverse of the graph of $g(x) = -x^2$ is not a function. (1)
- 1.5 Consider the graph of $g(x) = -x^2$
 - 1.5.1 Write down a possible restriction for the domain of $g(x) = -x^2$ so that the inverse of the graph of *g* will now be a function. (1)
 - 1.5.2 Hence draw the graph of the inverse function in 2.5.1 (2)

(2)

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICSGRADE 12SESSION 12(TEACHER NOTES)

1.6 Explain how, using the transformation of the graph of *f*, you would sketch the graphs of:

1.6.1
$$h(x) = -\log_3 x$$
 (2)

1.6.2
$$p(x) = \left(\frac{1}{3}\right)^x + 1$$
 (2)

1.7 Sketch the graph of
$$p(x) = \left(\frac{1}{3}\right)^x + 1$$
 on a set of axes. (3) [16]

SECTION B: SOLUTIONS AND HINTS TO SECTION A

1.1	$y = 3^{x}$ $\therefore x = 3^{y}$ $\therefore \log_{3} x = y$ $\therefore f^{-1}(x) = \log_{3} x$	✓ $x = 3^y$ ✓ $f^{-1}(x) = \log_3 x$	(2)
1.2	y f^{-1}	 ✓ shape ✓ (1;0) 	(2)
	(1;0) x		
1.3	Domain: $x \in (0; \infty)$	$\checkmark x \in (0; \infty)$	(1)
1.4	The inverse is a one-to-many relation, which is not a function.	✓ one-to-many	(1)

SENIOR SECONDARY INTERVENTION PROGRAMME

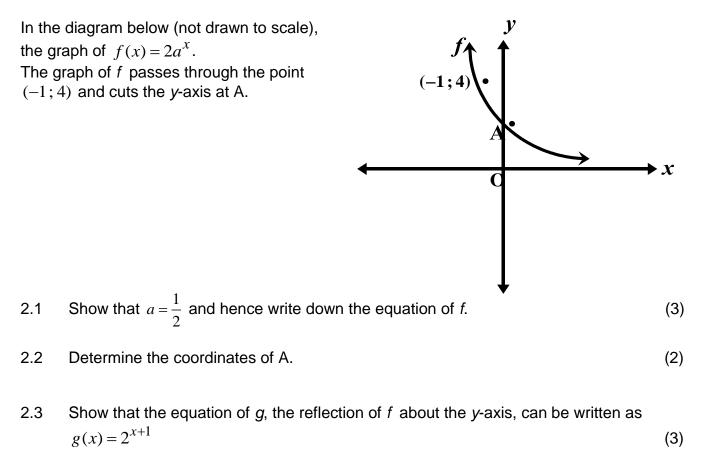
MATHEMATICS	GRADE 12 SESSION	12 (TEACHER NOTES)
$\begin{array}{c c} 1.5.1 & x \ge 0 \\ OR \\ x \le 0 \end{array}$		✓ answer (1)
1.5.2	$x \ge 0$ $x \le 0$ $x \le 0$	$y \qquad \checkmark \checkmark \text{ shape}$ (2)
$y = \log y$ $\therefore -y =$	x = y (reflection about the line $y = x$)	(2)
1.6.2 $y = 3^x$ $\therefore y = 3^x$ $\therefore y = 3^x$ $\therefore y = 3^x$	$\frac{1}{3}^{x}$ (Reflection about the y-axis) $\left(\frac{1}{3}\right)^{x}$ $\left(\frac{1}{3}\right)^{x} + 1$ (translation of 1 unit upwards)	
1.7	$y = \left(\frac{1}{3}\right)^{x} + 1$ $y = \left(\frac{1}{3}\right)^{x}$ $(0; 2)$ $y = 3^{x}$ $(0; 2)$	

MATHEMATICS

GRADE 12

SESSION 12

(TEACHER NOTES)


SECTION C: HOMEWORK

QUESTION 1

Consider the functions: $f(x) = 2x^2$ and $g(x) = \left(\frac{1}{2}\right)^x$

1.1	Restrict the domain of f in one specific way so that the inverse of f will also be a function.	(1)
1.2	Hence draw the graph of your new function f and its inverse	(-)
	function f^{-1} on the same set of axes.	(2)
1.3	Write the inverse of g in the form $g^{-1}(x) = \dots$	(2)
1.4	Sketch the graph of g^{-1} .	(2)
1.5	Determine graphically the values of x for which $\log_{\frac{1}{2}} x < 0$	(1)
	2	[8]

QUESTION 2

2.4 Draw a neat sketch graph of y = f(x-1)-2 indicating the intercepts with the axes as well as the equation of the asymptote. (4) [12]

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS

GRADE 12

SESSION 12

(TEACHER NOTES)

SECTION D: SOLUTIONS TO HOMEWORK

1.1	$f(x) = 2x^2$ where $x \ge 0$ OR	✓ $x \ge 0$ OR $x \le 0$	(1)
	$f(x) = 2x^2$ where $x \le 0$		
1.2	y f f^{-1} \vdots f^{-1} x \vdots $y = x$	✓ f ✓ f^{-1}	
	OR f \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots		(2)
1.3	$y = \left(\frac{1}{2}\right)^{x}$	$\checkmark x = \left(\frac{1}{2}\right)^y$	
	$x = \left(\frac{1}{2}\right)^{y}$	$\checkmark g^{-1}(x) = \log_{\frac{1}{2}} x$	
			(2)
	$\therefore \log_{\frac{1}{2}} x = y$		
	$\therefore \log_{\frac{1}{2}} x = y$ $\therefore g^{-1}(x) = \log_{\frac{1}{2}} x$		

SENIOR SECONDARY INTERVENTION PROGRAMME

2.1	$y = 2a^x$	✓ $4 = 2a^{-1}$	
	Substitute (-1;4)	$\checkmark 4 = 2a^{-1}$ $\checkmark a = \frac{1}{2}$	
	$\therefore 4 = 2a^{-1}$	2	
	$\therefore 4 = \frac{2}{2}$	$\checkmark f(x) = 2\left(\frac{1}{2}\right)^x$	
	a $\therefore 4a = 2$		(3)
	$\therefore a = \frac{1}{2}$		
	$\therefore f(x) = 2\left(\frac{1}{2}\right)^x$		
2.2	$y = 2\left(\frac{1}{2}\right)^0 = 2$	$\checkmark 2\left(\frac{1}{2}\right)^0$	
	(0;2)	✓ (0;2)	
			(2)

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS	GRADE 12	SESSION 12	(TEACHER N	IOTES)
$\begin{array}{ c c c c c } \hline 2.3 \\ g(x) = 2\left(\frac{1}{2}\right)^{-1} \end{array}$	-x		$\checkmark g(x) = 2\left(\frac{1}{2}\right)^{-x}$	
$\therefore g(x) = 2(2^x)$			$\checkmark g(x) = 2(2^x)$	
$\therefore g(x) = 2^{1+x}$			$\checkmark g(x) = 2^{x+1}$	
$\therefore g(x) = 2^{x+1}$				(3)
2.4	y (0; 2) (1; 0) y = -1	$\xrightarrow{)} x$	 ✓ y-intercept ✓ x-intercept ✓ asymptote ✓ shape 	(4)
				[12]

[12]

Page 97 of 123

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS GRADE 12 SESSION 13

(TEACHER NOTES)

TOPIC 1 : CALCULUS – LIMITS AND FIRST PRINCIPLES

LESSON OVERVIEW FOR EACH TOPIC

1.	Introduction session:	10 minutes
2.	Typical exam questions:	
	Question 1:	10 minutes
	Question 2:	10 minutes
2	Discussion of colutions:	15 minutos

3. Discussion of solutions: 15 minutes

Teacher Note: Calculus forms a large part of Paper 1 and learners should score well in questions involving this topic. Ensure that they don't lose marks by using faulty notation.

SECTION A: TYPICAL EXAM QUESTIONS

TOPIC 1 : CALCULUS – LIMITS AND FIRST PRINCIPLES

QUESTION 1: 10 minutes

1.1	Given: $f(x) = -2x^2 + 1$

1.1.1 Determine $f'(x)$ from first principles.	(5)
1.1.2 Determine the gradient of the graph at $x = -2$, i.e. $f'(-2)$	(1)
1.1.3 Determine $f(-2)$. What does your answer represent?	(2)
1.1.4 Determine the average gradient of f between $x = -2$ and $x = 4$	(4)
Use first principles to determine the derivative of $f(x) = \frac{1}{x}$	(5)

QUESTION 2: 10 minutes

1.2

- 2.1 Differentiate *f* by first principles where $f(x) = x^2 2x$. (5)
- 2.2 Determine the gradient of the tangent to the graph of $g(x) = x^3$ at x = 3 (6)

[11]

[17]

GAUTENG DEPARTMENT OF EDUCATION		SENIOR SECONDARY INTERVENTION PROGRAMME	
MATHEMATICS	GRADE 12	SESSION 13	(TEACHER NOTES)

TOPIC 2 : CALCULUS – RULES OF DIFFERENTIATION AND TANGENTS

QUESTION 1: 10 minutes

Determine the following and leave your answer with positive exponents:

1.1
$$D_x [(2x-3)(x+4)]$$
 (2)

1.2
$$f'(x)$$
 if $f(x) = \frac{1}{2\sqrt[4]{x^3}}$ (3)

1.3
$$\frac{dy}{dx} \text{ if } y = \left(2\sqrt{x} - \frac{1}{3x}\right)^2$$
(5)

1.4
$$D_x \left[\frac{1}{\sqrt{x}} \left(x^3 - 2x^2 + 3x \right) \right]$$
 (4)

QUESTION 2: 10 minutes

- 2.1 Determine the equation of the tangent to $f(x) = x^2 6x + 5$ at x = 2. (5)
- 2.2 Find the equation of the tangent to $f(x) = 3x^2 5x + 1$ which is parallel to the line y 7x + 4 = 0. (6)

[11]

[14]

GRADE 12

SESSION 13

(TEACHER NOTES)

SECTION B: SOLUTIONS AND HINTS TO SECTION A - TOPICS 1&2

TOPIC 1 : CALCULUS – LIMITS AND FIRST PRINCIPLES

1.1.1	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $\therefore f'(x) = \lim_{h \to 0} \frac{-2(x+h)^2 + 1 - (-2x^2 + 1)}{h}$ $\therefore f'(x) = \lim_{h \to 0} \frac{-2(x^2 + 2xh + h^2) + 1 + 2x^2 - 1}{h}$ $\therefore f'(x) = \lim_{h \to 0} \frac{-2x^2 - 4xh - 2h^2 + 1 + 2x^2 - 1}{h}$ $\therefore f'(x) = \lim_{h \to 0} \frac{h(-4x - 2h)}{h}$ $\therefore f'(x) = \lim_{h \to 0} (-4x - 2h)$ $\therefore f'(x) = -4x - 2(0)$ $\therefore f'(x) = -4x$	$ ✓ -2(x+h)^{2}+1 ✓ -(-2x^{2}+1) ✓ -2x^{2}-4xh-2h^{2} ✓ \frac{h(-4x-2h)}{h} ✓ -4x $ (5)
1.1.2	f'(x) = -4x $\therefore f'(-2) = -4(-2) = 8$	✓ answer (1)
1.1.3	$f(x) = -2x^{2} + 1$ $\therefore f(-2) = -2(-2)^{2} + 1$ $\therefore f(-2) = -7$ The answer represents the y-value corresponding to $x = -2$	✓ $f(-2) = -7$ ✓ interpretation (2)

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS	GRADE 12	SESSION 13	(TEACHER NOTES)
	$f(x) = -2x^{2} + 1$ $f(-2) = -2(-2)^{2} + 1$ f(-2) = -7 $f(4) = -2(4)^{2} + 1$ f(4) = -31 (-2; -7) and (4; -31) Average gradient = $\frac{-31-3}{4-6}$		✓ $f(-2) = -7$ ✓ $f(4) = -31$ ✓ $\frac{-31 - (-7)}{4 - (-2)}$ ✓ -4 (4)
1.2	$\therefore f'(x) = \lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h}$ $\therefore f'(x) = \lim_{h \to 0} \frac{\frac{x-(x+h)}{x}}{h}$ $\therefore f'(x) = \lim_{h \to 0} \frac{\frac{x-x-h}{x(x+h)}}{h}$ $\therefore f'(x) = \lim_{h \to 0} \frac{\frac{-h}{x(x+h)}}{h}$ $\therefore f'(x) = \lim_{h \to 0} \frac{-h}{x(x+h)} \times \frac{1}{h}$ $\therefore f'(x) = \lim_{h \to 0} \frac{-1}{x(x+h)}$ $\therefore f'(x) = \frac{-1}{x(x+0)}$ $\therefore f'(x) = -\frac{1}{x^2}$		$ \frac{1}{x+h} - \frac{1}{x} $ $ \frac{1}{x+h} - \frac{1}{x} $ $ \frac{1}{x+h} - \frac{1}{x} $ $ \frac{1}{x} - \frac{1}{x(x+h)} $ $ \frac{-1}{x(x+h)} $ $ \frac{-1}{x^{2}} $ (5)
II			[17]

MATHEMATICS

GRADE 12

SESSION 13

(TEACHER NOTES)

2.1	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ = $\lim_{h \to 0} \frac{(x+h)^2 - 2(x+h) - x^2 + 2x}{h}$ = $\lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 2x - 2h - x^2 + 2x}{h}$ = $\lim_{h \to 0} \frac{2xh + h^2 - 2h}{h}$ = $\lim_{h \to 0} \frac{h(2x+h-2)}{h}$ = $\lim_{h \to 0} (2x-2+h)$ = $2x-2$	$\checkmark (x+h)^2 - 2(x+h)$ $\checkmark -x^2 + 2x$ $\checkmark \frac{2xh+h^2 - 2h}{h}$ $\checkmark (2x-2+h)$ $\checkmark 2x-2$	(5)
2.2	$= 2x-2$ $g'(x) = \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}$ $\therefore g'(x) = \lim_{h \to 0} \frac{(x+h)(x+h)^2 - x^3}{h}$ $\therefore g'(x) = \lim_{h \to 0} \frac{(x+h)(x^2 + 2xh + h^2) - x^3}{h}$ $\therefore g'(x) = \lim_{h \to 0} \frac{x^3 + 2x^2h + xh^2 + x^2h + 2xh^2 + h^3 - x^3}{h}$ $\therefore g'(x) = \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3}{h}$ $\therefore g'(x) = \lim_{h \to 0} \frac{h(3x^2 + 3xh + h^2)}{h}$ $\therefore g'(x) = \lim_{h \to 0} (3x^2 + 3xh + h^2)$ $\therefore g'(x) = 3x^2$ $\therefore g'(3) = 3(3)^2 = 27$	$\checkmark (x+h)^3 - x^3$ $\checkmark 3x^2h + 3xh^2 + h^3$ $\checkmark (3x^2 + 3xh + h^2)$ $\checkmark 3x^2$ $\checkmark 27$	(6)
		[11]

MATHEMATICSGRADE 12SESSION 13(TEACHER NOTES)

TOPIC 2 : CALCULUS – RULES OF DIFFERENTIATION AND TANGENTS

1.1	$D_x \left[(2x-3)(x+4) \right]$	$\checkmark 2x^2 + 5x - 12$	
	$= \mathbf{D}_{x} \left[2x^{2} + 5x - 12 \right]$	$\checkmark 4x+5$	(2)
			(-)
1.2	$=4x+5$ $f(x) = \frac{1}{2\sqrt[4]{x^3}}$	$\checkmark \frac{1}{2}x^{-\frac{3}{4}}$	
	$\therefore f(x) = \frac{1}{2x^{\frac{3}{4}}}$	$ \checkmark -\frac{3}{8}x^{-\frac{7}{4}} \\ \checkmark -\frac{3}{8x^{\frac{7}{4}}} $	
	$\therefore f(x) = \frac{1}{2}x^{-\frac{3}{4}}$	$8x^{\frac{1}{4}}$	(3)
	$\therefore f'(x) = \frac{1}{2} \times -\frac{3}{4} x^{-\frac{3}{4}-1}$		
	$\therefore f'(x) = -\frac{3}{8}x^{-\frac{7}{4}}$		
	$\therefore f'(x) = -\frac{3}{8x^{\frac{7}{4}}}$		
1.3	$y = \left(2\sqrt{x} - \frac{1}{3x}\right)^2$	✓ squaring ✓ $4x - \frac{4}{3}x^{-\frac{1}{2}} + \frac{1}{9}x^{-2}$	
	$\therefore y = 4x - \frac{4\sqrt{x}}{3x} + \frac{1}{9x^2}$	$\checkmark \checkmark \checkmark 4 + \frac{2}{3x^{\frac{3}{2}}} - \frac{2}{9x^3}$	
	$\therefore y = 4x - \frac{4x^{\frac{1}{2}}}{3x} + \frac{1}{9}x^{-2}$		(5)
	$\therefore y = 4x - \frac{4}{3}x^{-\frac{1}{2}} + \frac{1}{9}x^{-2}$		
	$\therefore \frac{dy}{dx} = 4 - \frac{4}{3} \times -\frac{1}{2}x^{-\frac{3}{2}} + \frac{1}{9} \times -2x^{-3}$		
	$\therefore \frac{dy}{dx} = 4 + \frac{2}{3}x^{-\frac{3}{2}} - \frac{2}{9}x^{-3}$		
	$\therefore \frac{dy}{dx} = 4 + \frac{2}{3x^{\frac{3}{2}}} - \frac{2}{9x^{3}}$		

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS	GRADE 12	SESSION 13	(TEACHER NOTES)
	$D_{x}\left[\frac{1}{\sqrt{x}}\left(x^{3}-2x^{2}+3x\right)\right]$ $=D_{x}\left[\frac{x^{3}}{x^{\frac{1}{2}}}-\frac{2x^{2}}{x^{\frac{1}{2}}}+\frac{3x}{x^{\frac{1}{2}}}\right]$ $=D_{x}\left[x^{\frac{5}{2}}-2x^{\frac{3}{2}}+3x^{\frac{1}{2}}\right]$ $=\frac{5}{2}x^{\frac{3}{2}}-3x^{\frac{1}{2}}+\frac{3}{2}x^{-\frac{1}{2}}$ $=\frac{5}{2}x^{\frac{3}{2}}-3x^{\frac{1}{2}}+\frac{3}{2x^{\frac{1}{2}}}$		$\checkmark x^{\frac{1}{2}}$ $\checkmark D_{x} \left[x^{\frac{5}{2}} - 2x^{\frac{3}{2}} + 3x^{\frac{1}{2}} \right]$ $\checkmark \frac{5}{2} x^{\frac{3}{2}} - 3x^{\frac{1}{2}} + \frac{3}{2} x^{-\frac{1}{2}}$ $\checkmark \frac{5}{2} x^{\frac{3}{2}} - 3x^{\frac{1}{2}} + \frac{3}{2x^{\frac{1}{2}}}$ (4) [14]
	$\angle \lambda^{-}$		

2.1	$f(x) = x^{2} - 6x + 5$ $x_{T} = 2$ $y_{T} = f(2) = (2)^{2} - 6(2) + 5$ $\therefore y_{T} = -3$ $m_{T} = f'(x) = 2x - 6$ $\therefore f'(2) = 2(2) - 6 = -2$ $y - y_{T} = m_{t}(x - x_{T})$ $\therefore y - (-3) = -2(x - 2)$ $\therefore y + 3 = -2x + 4$ $\therefore y = -2x + 1$	✓ $f(2) = -2$ ✓ $f'(x) = 2x - 6$ ✓ $f'(2) = 2(2) - 6 = -2$ ✓ $y - (-3) = -2(x - 2)$ ✓ $y = -2x + 1$ (5)
2.2	$f(x) = 3x^{2} - 5x + 1$ $\therefore f'(x) = 6x - 5$ y = 7x - 4 $\therefore 6x - 5 = 7$ $\therefore 6x = 12$ $\therefore x = 2$ $f(2) = 3(2)^{2} - 5(2) + 1$ $\therefore f(2) = 3$ $\therefore y - 3 = 7(x - 2)$ $\therefore y - 3 = 7x - 14$	✓ $f'(x) = 6x - 5$ ✓ $6x - 5 = 7$ ✓ $x = 2$ ✓ $f(2) = 3$ ✓ $y - 3 = 7(x - 2)$ ✓ $y = 7x - 11$ (6)
	$\therefore y = 7x - 11$	[11]

MATHEMATICS

GRADE 12

SESSION 13

(TEACHER NOTES)

SECTION C: HOMEWORK

TOPIC 1 : CALCULUS – LIMITS AND FIRST PRINCIPLES

QUESTION 1

1.1 Given: $f(x) = 1 - \frac{1}{4}x^2$

- 1.1.1 Determine f'(x) from first principles.(6)1.1.2 Determine the gradient of the graph at x = -4, i.e. f'(-4)(1)1.1.3 Determine f(-2). What does your answer represent?(2)
- 1.1.4 Determine the average gradient of f between x = -2 and x = 4 (4)
- 1.2 Use first principles to determine the derivative of $f(x) = -\frac{3}{2}$

$$-\frac{5}{r}$$
 (5)

[18]

QUESTION 2

2.1 Differentiate *f* by first principles where f(x) = -2x. (4) 2.2 Determine the gradient of the tangent to the graph of $g(x) = -2x^3$ at x = 2 (6) [10]

TOPIC 2 : CALCULUS – RULES OF DIFFERENTIATION AND TANGENTS

QUESTION 1

Determine the following and leave your answer with positive exponents:

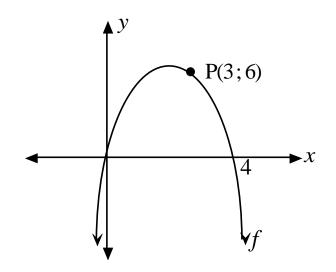
1.1 f'(x) if $f(x) = (4x-3)^2$ (2)

1.2
$$D_x \left[\sqrt[3]{x} + \frac{1}{\sqrt{x}} \right]$$
 (3)

1.3 $D_x \left[(x^2 - \sqrt{x})^2 \right]$ (5)

1.4
$$\frac{dy}{dx}$$
 if $y = \frac{2x^2 - \sqrt{x} + 5}{\sqrt{x}}$ (4)

QUESTION 2 10 minutes


- 2.1 Determine the equation of the tangent to the curve $y = 3x^2 2x + 2$ at x = -4. (5)
- 2.2 The graph of $f(x) = ax^2 + bx$ passes through the point P(3; 6) and cuts the *x*-axis

[14]

MATHEMATICSGRADE 12SESSION 13(TEACHER NOTES)

at (4; 0). Determine the equation of the tangent to f at P.

[11]

(6)

MATHEMATICS

GRADE 12

SESSION 13

(TEACHER NOTES)

SECTION D: SOLUTIONS TO HOMEWORK

2. TOPIC 1 : CALCULUS – LIMITS AND FIRST PRINCIPLES

1.1.1	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	$\checkmark 1 - \frac{1}{4}(x+h)^2$
	$\therefore f'(x) = \lim_{h \to 0} \frac{1 - \frac{1}{4}(x+h)^2 - \left(1 - \frac{1}{4}x^2\right)}{h}$	✓ $-1 + \frac{1}{4}x^2$ ✓ $-\frac{1}{4}x^2 - \frac{1}{2}xh - \frac{1}{4}h^2$
	$\therefore f'(x) = \lim_{h \to 0} \frac{1 - \frac{1}{4}(x^2 + 2xh + h^2) - 1 + \frac{1}{4}x^2}{h}$	$\checkmark -\frac{1}{2}xh - \frac{1}{4}h^2$
	$\therefore f'(x) = \lim_{h \to 0} \frac{1 - \frac{1}{4}x^2 - \frac{1}{2}xh - \frac{1}{4}h^2 - 1 + \frac{1}{4}x^2}{h}$	$\checkmark \left(-\frac{1}{2}x - \frac{1}{4}h \right)$ $\checkmark -\frac{1}{2}x$
	$\therefore f'(x) = \lim_{h \to 0} \frac{-\frac{1}{2}xh - \frac{1}{4}h^2}{h}$	(6)
	$\therefore f'(x) = \lim_{h \to 0} \frac{h\left(-\frac{1}{2}x - \frac{1}{4}h\right)}{h}$	
	$\therefore f'(x) = \lim_{h \to 0} \left(-\frac{1}{2}x - \frac{1}{4}h \right)$	
	$\therefore f'(x) = -\frac{1}{2}x$	
1.1.2	$f'(-4) = -\frac{1}{2}(-4) = 2$	✓ answer(1)

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHE	MATICS	GRADE 12	SESSION 13	(TEACHER N	IOTES)
1.1.3	$f(x) = 1 - \frac{1}{4}x^{2}$ $\therefore f(-2) = 1 - \frac{1}{4}(-2)$) ²		✓ $f(-2) = 0$ ✓ interpretation	(2)
	$\therefore f(-2) = 0$ The answer repres		orresponding to		
1.1.4	$f(x) = 1 - \frac{1}{4}x^{2}$ f(-2) = 0 f(4) = 1 - $\frac{1}{4}(4)^{2}$ ∴ f(4) = -3			✓ $f(-2) = -7$ ✓ $f(4) = -31$ ✓ $\frac{-31 - (-7)}{4 - (-2)}$ ✓ -4	
	$\therefore f(4) = -3$ (-2;0) and (4; Average gradient =		$\frac{1}{2}$		(4)
1.2	$\therefore f'(x) = \lim_{h \to 0} \frac{-\frac{3}{x+1}}{-\frac{3}{x+1}}$	$-+\frac{3}{2}$		$\checkmark -\frac{3}{x+h} - \left(-\frac{3}{x}\right)$ $\checkmark -\frac{3}{x+h} + \frac{3}{x}$	
	$\therefore f'(x) = \lim_{h \to 0} \frac{x+x}{-3x+3}$ $\therefore f'(x) = \lim_{h \to 0} \frac{\frac{-3x+3}{x}}{-3x+3}$	$\frac{h(x+h)}{h}$		$x + h x$ $\checkmark \frac{3h}{\frac{x(x+h)}{h}}$	
	$\therefore f'(x) = \lim_{h \to 0} \frac{x(x)}{h}$ $\therefore f'(x) = \lim_{h \to 0} \frac{\frac{3h}{x(x+h)}}{h}$	$\frac{(h)}{h}$		$\checkmark \frac{3}{x(x+h)}$ $\checkmark \frac{3}{x^2}$	
	$\therefore f'(x) = \lim_{h \to 0} \frac{3h}{x(x+x)}$ $\therefore f'(x) = \lim_{h \to 0} \frac{3}{x(x+x)}$				(5)
	$\therefore f'(x) = \frac{3}{x(x+0)}$ $\therefore f'(x) = \frac{3}{x^2}$				
					[18]

Page 108 of 123

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS

GRADE 12

SESSION 13

(TEACHER NOTES)

2.1	f(x + b) = f(x)	(2(n+b) (2n))
2.1	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	$\checkmark -2(x+h) - (-2x)$
		$\checkmark -x^2 + 2x$ $\checkmark \frac{-2h}{l}$
	$= \lim_{h \to 0} \frac{-2(x+h) - (-2x)}{h}$	$\sqrt{\frac{2n}{h}}$
		✓ -2
	$=\lim_{h\to 0}\frac{-2x-2h+2x}{h}$	(4)
	$=\lim_{h\to 0}\frac{-2h}{h}$	
	$=\lim_{h\to 0}(-2)$	
	=-2	
2.2	$g'(x) = \lim_{h \to 0} \frac{-2(x+h)^3 - (-2x^3)}{h}$	✓ $-2(x+h)^3 - (-2x^3)$
		✓ $-2(x+h)^3 - (-2x^3)$ ✓ $√$ $-6x^2h - 6xh^2 - 2h^3$
	$\therefore g'(x) = \lim_{h \to 0} \frac{-2(x+h)(x+h)^2 + 2x^3}{h}$	$\checkmark \checkmark (-6x^2 - 6xh - 2h)$
		$\checkmark -6x^2$
	$\therefore g'(x) = \lim_{h \to 0} \frac{-2(x+h)(x^2 + 2xh + h^2) + 2x^3}{h}$	(6)
	$\therefore g'(x) = \lim_{h \to 0} \frac{-2(x^3 + 2x^2h + xh^2 + x^2h + 2xh^2 + h^3) + 2x^3}{h}$	
	$\therefore g'(x) = \lim_{h \to 0} \frac{-2(x^3 + 3x^2h + 3xh^2 + h^3) + 2x^3}{h}$	
	$\therefore g'(x) = \lim_{h \to 0} \frac{-2x^3 - 6x^2h - 6xh^2 - 2h^3 + 2x^3}{h}$	
	$\therefore g'(x) = \lim_{h \to 0} \frac{-6x^2h - 6xh^2 - 2h^3}{h}$	
	$\therefore g'(x) = \lim_{h \to 0} \frac{h(-6x^2 - 6xh - 2h)}{h}$	
	$\therefore g'(x) = \lim_{h \to 0} (-6x^2 - 6xh - 2h)$	
	$\therefore g'(x) = -6x^2$ $\therefore g'(2) = -6(2)^2 = -24$	
	$\therefore g'(2) = -6(2)^2 = -24$	
		[10]

MATHEMATICSGRADE 12SESSION 13(TEACHER NOTES)

TOPIC 2 : CALCULUS – RULES OF DIFFERENTIATION AND TANGENTS

$\begin{array}{c} \therefore f(x) = 16x^2 - 24x + 9 \\ \therefore f'(x) = 16 \times 2x^{2^{-1}} - 24 + 0 \\ \therefore f'(x) = 32x - 24 \end{array} $ $\begin{array}{c} \checkmark & x^{\frac{1}{2}} + x^{-\frac{1}{2}} \\ \Rightarrow & y^{\frac{1}{2}} + x^{-\frac{1}{2}} \\ = D_x \left[\sqrt[3]{x} + \frac{1}{\sqrt{x}} \right] \\ = D_x \left[x^{\frac{1}{2}} + x^{-\frac{1}{2}} \right] \\ = \frac{1}{3}x^{-\frac{3}{2}} - \frac{1}{2}x^{-\frac{3}{2}} \\ = \frac{1}{3x^3} - \frac{1}{2}x^{-\frac{3}{2}} \\ = \frac{1}{3x^3} - \frac{1}{2x^2} \\ = D_x \left[(x^2 - \sqrt{x})^2 \right] \\ = D_x \left[(x^4 - 2x^2\sqrt{x} + x) \right] \\ = D_x \left[x^4 - 2x^2\sqrt{x} + x \right] \\ = D_x \left[x^4 - 2x^{\frac{1}{2}} + x \right] \\ = D_x \left[x^4 - 2x^{\frac{1}{2}} + x \right] \\ = \frac{4x^3 - 5x^{\frac{3}{2}} + 1} \\ 1.4 \qquad y = \frac{2x^2 - \sqrt{x} + 5}{\sqrt{x}} \\ \therefore y = \frac{2x^2}{x^{\frac{1}{2}}} - 1 + \frac{5}{x^{\frac{1}{2}}} \\ \therefore y = 2x^{\frac{3}{2}} - 1 + 5x^{-\frac{1}{2}} \\ \therefore y = 2x^{\frac{3}{2}} - 1 + 5x^{-\frac{1}{2}} \\ \therefore y = 2x^{\frac{3}{2}} - 1 + 5x^{-\frac{1}{2}} \\ \therefore \frac{dy}{dx} = 3x^{\frac{1}{2}} - \frac{5}{2x^{\frac{3}{2}}} \\ \end{array}$ $\begin{array}{c} \checkmark & 3x^{\frac{1}{2}} - \frac{5}{2x^{\frac{3}{2}}} \\ \checkmark & (4) \\ \end{array}$	1.1	$f(x) = (4x - 3)^2$	$\checkmark 16x^2 - 24x + 9$	
$\begin{array}{c} (1) \\$				(-)
$\begin{array}{c c} \cdot f'(x) = 32x - 24 \\ \hline 1.2 & D_x \left[\sqrt[3]{x} + \frac{1}{\sqrt{x}} \right] \\ = D_x \left[x^{\frac{1}{3}} + x^{-\frac{1}{2}} \right] \\ = \frac{1}{3x} \left[x^{\frac{3}{3}} - \frac{1}{2x^{\frac{3}{2}}} \right] \\ = \frac{1}{3x^{\frac{3}{2}}} - \frac{1}{2x^{\frac{3}{2}}} \\ = D_x \left[(x^2 - \sqrt{x})^2 \right] \\ = D_x \left[x^4 - 2x^2 \sqrt{x} + x \right] \\ = D_x \left[x^4 - 2x^2 \sqrt{x} + x \right] \\ = D_x \left[x^4 - 2x^2 \sqrt{x} + x \right] \\ = D_x \left[x^4 - 2x^2 \sqrt{x} + x \right] \\ = D_x \left[x^4 - 2x^{\frac{5}{2}} + x \right] \\ = \frac{4x^3 - 5x^{\frac{3}{2}} + 1}{\sqrt{x}} \\ \therefore y = \frac{2x^2 - \sqrt{x} + 5}{\sqrt{x}} \\ \therefore y = \frac{2x^2 - \sqrt{x} + 5}{x^{\frac{1}{2}}} \\ \therefore y = 2x^{\frac{3}{2}} - 1 + \frac{5}{x^{\frac{1}{2}}} \\ \therefore y = 2x^{\frac{3}{2}} - 1 + 5x^{-\frac{1}{2}} \\ \therefore \frac{dy}{dx} = 3x^{\frac{1}{2}} - \frac{5}{2x^{\frac{3}{2}}} \\ \end{array}$				(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c} = D_{x} \left[x^{\frac{1}{3}} + x^{-\frac{1}{2}} \right] \\ = D_{x} \left[x^{\frac{1}{3}} + x^{-\frac{1}{2}} \right] \\ = \frac{1}{3} x^{-\frac{3}{2}} - \frac{1}{2} x^{-\frac{3}{2}} \\ = \frac{1}{3x^{\frac{3}{2}}} - \frac{1}{2x^{\frac{3}{2}}} \\ = D_{x} \left[x^{2} - \sqrt{x} \right]^{2} \right] \\ = D_{x} \left[x^{4} - 2x^{2}\sqrt{x} + x \right] \\ = D_{x} \left[x^{4} - 2x^{2}x^{\frac{1}{2}} + x \right] \\ = D_{x} \left[x^{4} - 2x^{\frac{5}{2}} + x \right] \\ = D_{x} \left[x^{4} - 2x^{\frac{5}{2}} + x \right] \\ = D_{x} \left[x^{4} - 2x^{\frac{5}{2}} + x \right] \\ = D_{x} \left[x^{4} - 2x^{\frac{5}{2}} + x \right] \\ = \frac{4x^{3} - 5x^{\frac{3}{2}} + 1}{\sqrt{x^{4}}} \\ \therefore y = \frac{2x^{2} - \sqrt{x + 5}}{\sqrt{x}} \\ \therefore y = \frac{2x^{2} - \sqrt{x + 5}}{x^{\frac{1}{2}}} \\ \therefore y = 2x^{\frac{3}{2}} - 1 + 5x^{-\frac{1}{2}} \\ \therefore y = 2x^{\frac{3}{2}} - 1 + 5x^{-\frac{1}{2}} \\ \therefore \frac{dy}{dx} = 3x^{\frac{1}{2}} - \frac{5}{2x^{\frac{3}{2}}} \\ (4) \\ \therefore \frac{dy}{dx} = 3x^{\frac{1}{2}} - \frac{5}{2x^{\frac{3}{2}}} \\ \end{array}$	1.2		$\frac{1}{2}$ $-\frac{1}{2}$	
$= D_{x} \begin{bmatrix} x^{3} + x^{2} \end{bmatrix}$ $= \frac{1}{3} x^{-\frac{2}{3}} - \frac{1}{2} x^{-\frac{3}{2}}$ $= \frac{1}{3x^{\frac{3}{3}}} - \frac{1}{2x^{\frac{3}{2}}}$ $= D_{x} \begin{bmatrix} x^{4} - 2x^{2}\sqrt{x} + x \end{bmatrix}$ $= D_{x} \begin{bmatrix} x^{4} - 2x^{2}\sqrt{x} + x \end{bmatrix}$ $= D_{x} \begin{bmatrix} x^{4} - 2x^{\frac{3}{2}} + x \end{bmatrix}$ $= D_{x} \begin{bmatrix} x^{4} - 2x^{\frac{3}{2}} + x \end{bmatrix}$ $= D_{x} \begin{bmatrix} x^{4} - 2x^{\frac{3}{2}} + x \end{bmatrix}$ $= D_{x} \begin{bmatrix} x^{4} - 2x^{\frac{5}{2}} + x \end{bmatrix}$ $= D_{x} \begin{bmatrix} x^{4} - 2x^{\frac{5}{2}} + x \end{bmatrix}$ $= D_{x} \begin{bmatrix} x^{4} - 2x^{\frac{5}{2}} + x \end{bmatrix}$ $= D_{x} \begin{bmatrix} x^{4} - 2x^{\frac{5}{2}} + x \end{bmatrix}$ $= D_{x} \begin{bmatrix} x^{4} - 2x^{\frac{5}{2}} + x \end{bmatrix}$ $= D_{x} \begin{bmatrix} x^{4} - 2x^{\frac{5}{2}} + x \end{bmatrix}$ $= D_{x} \begin{bmatrix} x^{4} - 2x^{\frac{5}{2}} + x \end{bmatrix}$ $= D_{x} \begin{bmatrix} x^{4} - 2x^{\frac{5}{2}} + x \end{bmatrix}$ $= D_{x} \begin{bmatrix} x^{4} - 2x^{\frac{5}{2}} + x \end{bmatrix}$ $= D_{x} \begin{bmatrix} x^{4} - 2x^{\frac{5}{2}} + x \end{bmatrix}$ $= D_{x} \begin{bmatrix} x^{4} - 2x^{\frac{5}{2}} + x \end{bmatrix}$ $= D_{x} \begin{bmatrix} x^{4} - 2x^{\frac{5}{2}} + x \end{bmatrix}$ $= D_{x} \begin{bmatrix} x^{4} - 2x^{\frac{5}{2}} + x \end{bmatrix}$ $= D_{x} \begin{bmatrix} x^{4} - 2x^{\frac{5}{2}} + x \end{bmatrix}$ $= D_{x} \begin{bmatrix} x^{4} - 2x^{\frac{5}{2}} + x \end{bmatrix}$ $= D_{x} \begin{bmatrix} x^{4} - 2x^{\frac{5}{2}} + x \end{bmatrix}$ $= D_{x} \begin{bmatrix} x^{4} - 2x^{\frac{5}{2}} + x \end{bmatrix}$ $= D_{x} \begin{bmatrix} x^{2} - 2x^{\frac{5}{2}} + x \end{bmatrix}$ $= 2x^{\frac{5}{2}} - 1 + 5x^{\frac{5}{2}} + x^{\frac{5}{2}}$ $\therefore y = 2x^{\frac{3}{2}} - 1 + 5x^{\frac{5}{2}} + x^{\frac{5}{2}} + x^{\frac{5}{2}}$ $\therefore y = 2x^{\frac{3}{2}} - 1 + 5x^{-\frac{1}{2}} + x^{\frac{5}{2}} + x^{\frac{5}{$		$\left \begin{array}{c} D_x \\ \sqrt[3]{x} + \frac{1}{\sqrt{x}} \end{array} \right $		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$= D_x \left[x^{\frac{1}{3}} + x^{-\frac{1}{2}} \right]$	5 2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			$\checkmark \frac{1}{\frac{2}{2}} - \frac{1}{\frac{3}{2}}$	
1.3 $D_{x}\left[(x^{2}-\sqrt{x})^{2}\right] = D_{x}\left[x^{4}-2x^{2}\sqrt{x}+x\right] = D_{x}\left[x^{4}-2x^{2}\sqrt{x}+x\right] = D_{x}\left[x^{4}-2x^{2}x^{\frac{1}{2}}+x\right] = D_{x}\left[x^{4}-2x^{\frac{5}{2}}+x\right] = D_{x}\left[x^{4}-2x^{\frac{5}{2}}+x\right] = D_{x}\left[x^{4}-2x^{\frac{5}{2}}+x\right] = 2x^{2}\sqrt{x}+x^{\frac{1}{2}} = 2x^{2}\sqrt{x}+x^{\frac{1}{2}} = 2x^{2}\sqrt{x}+x^{\frac{1}{2}} = 2x^{2}\sqrt{x}+x^{\frac{1}{2}} = 2x^{\frac{3}{2}}\sqrt{x}+x^{\frac{1}{2}} = 2x^{\frac{3}{2}}\sqrt{x}+x^{\frac{1}{2}$		$=\frac{1}{3}x^{-\frac{2}{3}}-\frac{1}{2}x^{-\frac{3}{2}}$	$3x^3 2x^2$	(3)
1.3 $D_{x}\left[(x^{2}-\sqrt{x})^{2}\right] = D_{x}\left[x^{4}-2x^{2}\sqrt{x}+x\right] = D_{x}\left[x^{4}-2x^{2}\sqrt{x}+x\right] = D_{x}\left[x^{4}-2x^{2}x^{\frac{1}{2}}+x\right] = D_{x}\left[x^{4}-2x^{\frac{5}{2}}+x\right] = D_{x}\left[x^{4}-2x^{\frac{5}{2}}+x\right] = D_{x}\left[x^{4}-2x^{\frac{5}{2}}+x\right] = 2x^{2}\sqrt{x}+x^{\frac{1}{2}} = 2x^{2}\sqrt{x}+x^{\frac{1}{2}} = 2x^{2}\sqrt{x}+x^{\frac{1}{2}} = 2x^{2}\sqrt{x}+x^{\frac{1}{2}} = 2x^{\frac{3}{2}}\sqrt{x}+x^{\frac{1}{2}} = 2x^{\frac{3}{2}}\sqrt{x}+x^{\frac{1}{2}$		$=\frac{1}{2}-\frac{1}{3}$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.3		5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			$\checkmark \checkmark x^4 - 2x^2 + x$	
$= D_{x} \left[x^{4} - 2x^{2}x^{\frac{1}{2}} + x \right]$ $= D_{x} \left[x^{4} - 2x^{\frac{5}{2}} + x^{\frac{5}{2}} + x^$		$= \mathbf{D}_x \left[x^4 - 2x^2 \sqrt{x} + x \right]$	$\checkmark \checkmark \checkmark 4x^3 - 5x^{\overline{2}} + 1$	(5)
$ \begin{array}{c} = 4x^{3} - 5x^{\frac{3}{2}} + 1 \\ $		$= \mathbf{D}_x \left[x^4 - 2x^2 x^{\frac{1}{2}} + x \right]$		(0)
$\therefore y = \frac{2x^{2}}{x^{\frac{1}{2}}} - 1 + \frac{5}{x^{\frac{1}{2}}}$ $\therefore y = 2x^{\frac{3}{2}} - 1 + 5x^{-\frac{1}{2}}$ $\therefore y = 2x^{\frac{3}{2}} - 1 + 5x^{-\frac{1}{2}}$ $\therefore \frac{dy}{dx} = 3x^{\frac{1}{2}} - \frac{5}{2}x^{-\frac{3}{2}}$ $\therefore \frac{dy}{dx} = 3x^{\frac{1}{2}} - \frac{5}{2x^{\frac{3}{2}}}$ (4)				
$\therefore y = \frac{2x^{2}}{x^{\frac{1}{2}}} - 1 + \frac{5}{x^{\frac{1}{2}}}$ $\therefore y = 2x^{\frac{3}{2}} - 1 + 5x^{-\frac{1}{2}}$ $\therefore y = 2x^{\frac{3}{2}} - 1 + 5x^{-\frac{1}{2}}$ $\therefore \frac{dy}{dx} = 3x^{\frac{1}{2}} - \frac{5}{2}x^{-\frac{3}{2}}$ $\therefore \frac{dy}{dx} = 3x^{\frac{1}{2}} - \frac{5}{2x^{\frac{3}{2}}}$ (4)		$=4x^3 - 5x^{\frac{3}{2}} + 1$		
$\therefore y = \frac{2x^{2}}{x^{\frac{1}{2}}} - 1 + \frac{5}{x^{\frac{1}{2}}}$ $\therefore y = 2x^{\frac{3}{2}} - 1 + 5x^{-\frac{1}{2}}$ $\therefore y = 2x^{\frac{3}{2}} - 1 + 5x^{-\frac{1}{2}}$ $\therefore \frac{dy}{dx} = 3x^{\frac{1}{2}} - \frac{5}{2}x^{-\frac{3}{2}}$ $\therefore \frac{dy}{dx} = 3x^{\frac{1}{2}} - \frac{5}{2x^{\frac{3}{2}}}$ (4)	1.4	$y = \frac{2x^2 - \sqrt{x} + 5}{\sqrt{x}}$	$\checkmark x^{\frac{1}{2}}$	
$\therefore \frac{dy}{dx} = 3x^{\frac{1}{2}} - \frac{5}{2x^{\frac{3}{2}}}$				
$\therefore \frac{dy}{dx} = 3x^{\frac{1}{2}} - \frac{5}{2x^{\frac{3}{2}}}$		$\therefore y = \frac{1}{x^2} - 1 + \frac{1}{x^2}$	$\checkmark 3x^2 - \frac{2}{2}x^2$	
$\therefore \frac{dy}{dx} = 3x^{\frac{1}{2}} - \frac{5}{2x^{\frac{3}{2}}}$		$\therefore y = 2x^{\frac{3}{2}} - 1 + 5x^{-\frac{1}{2}}$	$\checkmark 3x^{\frac{1}{2}} - \frac{5}{2x^{\frac{3}{2}}}$	
$\therefore \frac{dy}{dx} = 3x^{\frac{1}{2}} - \frac{5}{2x^{\frac{3}{2}}}$		$\therefore \frac{dy}{dx} = 3x^{\frac{1}{2}} - \frac{5}{2}x^{-\frac{3}{2}}$		(4)
		$\therefore \frac{dy}{dx} = 3x^{\frac{1}{2}} - \frac{5}{\frac{3}{3}}$		
		$ax 2x^2$		[14]

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS

GRADE 12

SESSION 13

(TEACHER NOTES)

QUESTION 2

0.4	2	
2.1	$y = f(x) = 3x^2 - 2x + 2$	✓ $f(-4) = 58$ ✓ $f'(x) = 6x - 2$
	$x_{\rm T} = -4$	✓ $f'(5) = -26$
	$\therefore f(-4) = 3(-4)^2 - 2(-4) + 2$	✓ $y - 58 = -26(x - (-4))$
	$\therefore f(-4) = 58$	$\checkmark y = -26x - 46$
	$\therefore y_{\rm T} = 58$	(5)
	$m_{\rm T} = f'(x) = 6x - 2$	
	$\therefore f'(-4) = 6(-4) - 2$	
	$\therefore f'(5) = -26$	
	$y - y_{\rm T} = m_t (x - x_{\rm T})$	
	$\therefore y - 58 = -26(x - (-4))$	
	$\therefore y - 58 = -26x - 104$	
	$\therefore y = -26x - 46$	
2.2	y = a(x-0)(x-4)	$\checkmark y = a(x-0)(x-4)$
	Substitute the point (3;6)	$\checkmark a = -2$
	$\therefore 6 = a(3-0)(3-4)$	$\checkmark f(x) = -2x^2 + 8x$
	$\therefore 6 = -3a$	$\checkmark f'(x) = -4x + 8$
	$\therefore a = -2$	✓ $f'(3) = -4(3) + 8 = -4$ ✓ $y = -4x + 18$
	$\therefore y = -2(x-0)(x-4)$	(6) $y = -4x + 18$
	$\therefore y = -2x(x-4)$	
	$\therefore y = -2x^2 + 8x$	
	$f(x) = -2x^2 + 8x$	
	$\therefore f'(x) = -4x + 8$	
	$\therefore f'(3) = -4(3) + 8 = -4$	
	$y - y_{\rm T} = m_t (x - x_{\rm T})$	
	$\therefore y-6=-4(x-3)$	
	$\therefore y - 6 = -4x + 12$	
	$\therefore y = -4x + 18$	
		[11]

mindset

BON

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS GRADE 12 SESSION 14

(TEACHER NOTES)

TOPIC 1 : CALCULUS – GRAPHICAL APPLICATIONS

Teacher Note: TOPIC 1: Cubic graphs are easy to sketch and are worth a lot of marks in the matric exam. Make sure the learners learn how to sketch these graphs.

TOPIC 2: Linear Programming requires learners to be able to translate from words into maths, which is quite a challenge. However, if the words "at least", "at most", "may not exceed" and "must not be more than" are fully explained and understood, then this topic can be well answered. Revise the linear function in detail before approaching this topic.

LESSON OVERVIEW FOR EACH TOPIC

1.	Introduction session:	10 minutes
2.	Typical exam questions:	
	Question 1:	10 minutes
	Question 2:	10 minutes
~		· - · ·

3. Discussion of solutions: 15 minutes

SECTION A: TYPICAL EXAM QUESTIONS

TOPIC 1 : CALCULUS – GRAPHICAL APPLICATIONS

QUESTION 1: 10 minutes

Sketch the graph of $f(x) = 2x^3 - 6x - 4$

QUESTION 2: 10 minutes

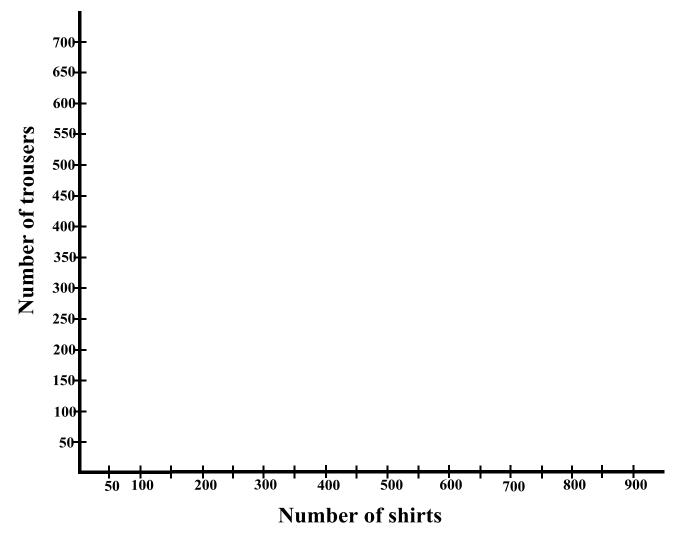
(2;9) is a turning point on the graph of $f(x) = ax^3 + 5x^2 + 4x + b$. Determine the value of *a* and *b* and hence the equation of the cubic function. [7]

3. TOPIC 2: LINEAR PROGRAMMING

QUESTION 1: 20 minutes

A clothing company manufactures white shirts and grey trousers for schools.

- A minimum of 200 shirts must be manufactured daily.
- In total, not more than 600 pieces of clothing can be manufactured daily.
- It takes 50 machine minutes to manufacture a shirt and 100 machine minutes to manufacture a pair of trousers.
- There are at most 45 000 machine minutes available per day.



[17]

MATHEMATICS GRADE 12 SESSION 14 (TEACHER NOTES)

Let the number of white shirts manufactured in a day be x. Let the number of pairs of grey trousers manufactured in a day be y.

- 1.1 Write down the constraints, in terms of *x* and *y*, to represent the above information. (You may assume: $x \ge 0$, $y \ge 0$) (3)
- 1.2 Use the diagram provided on the next page to represent the constraints graphically.
- 1.3 Clearly indicate the feasible region by shading it.
- 1.4 If the profit is R30 for a shirt and R40 for a pair of trousers, write down the equation indicating the profit in terms of x and y. (2)
- 1.5 Using a search line and your graph, determine the number of shirts and pairs of trousers that will yield a maximum daily profit. (3)

[14]

(5)

(1)

MATHEMATICS

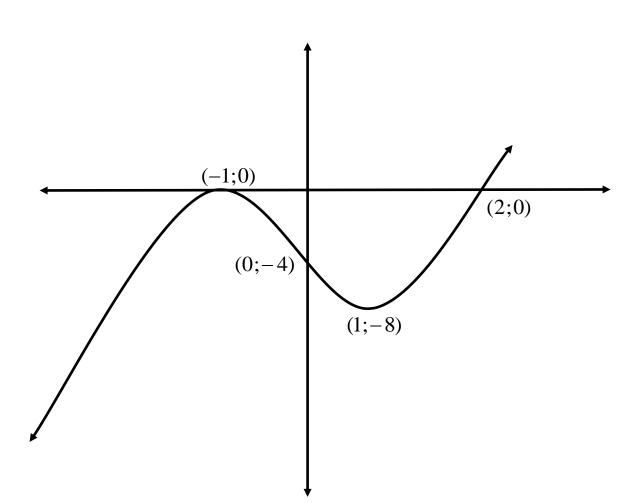
SESSION 14

(TEACHER NOTES)

SECTION B: SOLUTIONS AND HINTS TO SECTION A

TOPIC 1 : CALCULUS – GRAPHICAL APPLICATIONS

<i>y</i> -intercept: $(0;-4)$	✓ (0;-4)
<i>x</i> -intercepts:	$\checkmark 0 = 2x^3 - 6x - 4$
$0 = 2x^3 - 6x - 4$	✓ $0 = (x+1)(x^2 - x - 2)$
$\therefore 0 = x^3 - 3x - 2$	✓ $0 = (x+1)(x-2)(x+1)$
$\therefore 0 = (x+1)(x^2 - x - 2)$ (using the factor theorem)	✓ (-1;0) (2;0)
$\therefore 0 = (x+1)(x-2)(x+1)$	
$\therefore x = -1$ or $x = 2$	
(-1;0) (2;0)	
Stationary points:	
$f(x) = 2x^3 - 6x - 4$	$\checkmark f'(x) = 6x^2 - 6$
$\therefore f'(x) = 6x^2 - 6$	$\checkmark 0 = 6x^2 - 6$
$\therefore 0 = 6x^2 - 6$ (At a turning point, $f'(x) = 0$)	✓ $x = \pm 1$ ✓ (1;-8) and (-1;0)
$\therefore 0 = x^2 - 1$	(1, 0) and (1,0)
$\therefore x = \pm 1$	
f(1) = -8	
f(-1) = 0	
Turning points are $(1; -8)$ and $(-1; 0)$	
Point of inflection:	✓ $f''(x) = 12x$
$f'(x) = 6x^2 - 6$	✓ (0;-4)
$\therefore f''(x) = 12x$	
$\therefore 0 = 12x$	
$\therefore x = 0$	
f(0) = -4	
Point of inflection at $(0; -4)$	
Alternatively:	(1) + (-1)
The <i>x</i> -coordinate of the point of inflection can be determined by adding the <i>x</i> -coordinates of the turning	$\checkmark \frac{(1) + (-1)}{2}$ $\checkmark x = 0$
points and then dividing the result by 2.	$\checkmark x = 0$
$x = \frac{(1) + (-1)}{2} = 0$	



GRADE 12

SESSION 14

(TEACHER NOTES)

The graph is represented above	 ✓ intercepts with the axes ✓ turning points ✓ shape ✓ point of inflection
	[17]

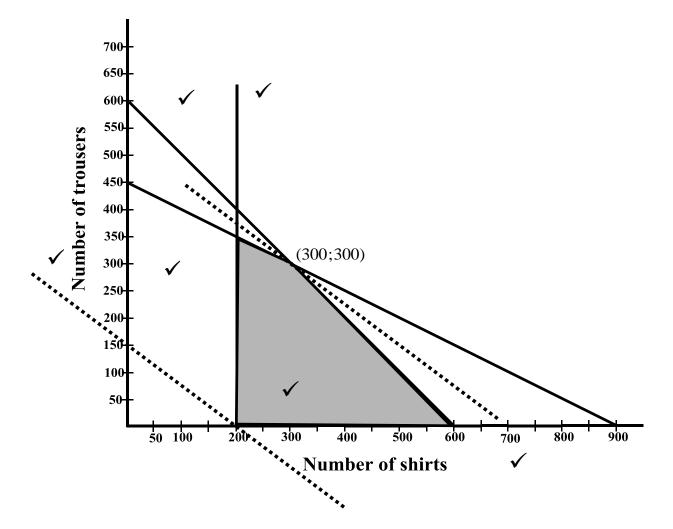
At the turning point (2;9), we know that	$\checkmark f'(x) = 3ax^2 + 10x + 4$
f'(2) = 0	$\checkmark f'(2) = 12a + 24$
$f(x) = ax^3 + 5x^2 + 4x + b$	$\checkmark a = -2$
$\therefore f'(x) = 3ax^2 + 10x + 4$	$\checkmark y = -2x^3 + 5x^2 + 4x + b$
$\therefore f'(2) = 3a(2)^2 + 10(2) + 4$	✓ 9 = $-2(2)^3 + 5(2)^2 + 4(2) + b$
f(2) = 5a(2) + 10(2) + 4	✓ $b = -3$
	✓ $f(x) = -x^3 + 5x^2 + 4x - 3$
	[7]

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS	GRADE 12	SESSION 14	(TEACHER NOTES)
$\therefore f'(2) =$			
$\therefore 0 = 12a$	+24		
$\therefore -12a =$	24		
equation: $y = -2x^3$ In order to (2;9) into $\therefore 9 = -2(2)$ $\therefore 9 = -16$ $\therefore 9 = 12 + 2$ $\therefore -b = 3$	ow substitute $a = -2$ into $+5x^{2} + 4x + b$ o get the value of <i>b</i> , substi- this equation: $2)^{3} + 5(2)^{2} + 4(2) + b$ + 20 + 8 + b <i>b</i>		
$\therefore b = -3$ The equa	tion of the cubic function is	s therefore	
•	$x^3 + 5x^2 + 4x - 3$		

TOPIC 2 : LINEAR PROGRAMMING

1.1	$x \ge 200$	$\checkmark x \ge 200$
	$x + y \le 600$	✓ $x + y \le 600$
	$50x + 100y \le 45000$	$\checkmark 50x + 100y \le 45000$
	5	(3)
1.2	See diagram	See diagram for mark allocation
		(5)
1.3	See diagram	See diagram for mark allocation
		(1)



MATHEMATICS

GRADE 12

SESSION 14

(TEACHER NOTES)

1.4	$\mathbf{P} = 30x + 40y$	$\begin{array}{c} \checkmark & 30x \\ \checkmark & 40y \end{array}$
		(2)
1.5	30x + 40y = P $\therefore 40y = -30x + P$ $\therefore y = -\frac{3}{4}x + \frac{P}{40}$ 3 cuts on <i>y</i> -axis 4 cuts on <i>x</i> -axis Maximum at (300;300)	✓ $y = -\frac{3}{4}x + \frac{P}{40}$ ✓ search line ✓ (300;300) (3)
		[14]

SESSION 14

MATHEMATICS

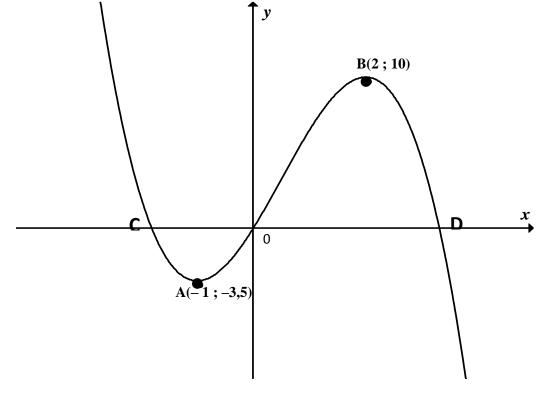
GRADE 12

(TEACHER NOTES)

SECTION C: HOMEWORK

TOPIC 1 : CALCULUS – GRAPHICAL APPLICATIONS

QUESTION 1


Sketch the graph of $f(x) = x^3 - 3x^2 + 4$

Indicate the coordinates of the stationary points, intercepts with the axes and any points of inflection. [15]

QUESTION 2

(DoE Feb. 2009 Paper 1)

The graph of $h(x) = -x^3 + ax^2 + bx$ is shown below. A(-1; -3,5) and B(2;10) are the turning points of *h*. The graph passes through the origin and further cuts the *x*-axis at C and D.

2.1 Show that
$$a = \frac{3}{2}$$
 and $b = 6$ (7)

- 2.2 Calculate the average gradient between A and B. (2)
- 2.3 Determine the equation of the tangent to *h* at x = -2. (5)
- 2.4 Determine the x-value of the point of inflection of h. (3)

[17]

GAUTENG DEPARTMENT OF EDUCATION	SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICSGRADE 12SESSION 14(TEACHER NOTES)

TOPIC 2 : LINEAR PROGRAMMING

QUESTION 1

A chemical solution is made by mixing two chemicals, P and Q into a solution called S. The solution S requires at least 900kg but not more than 1400kg of the chemicals. The solution must contain at least 2kg of P to every kg of Q. Write down the constraints and then sketch the feasible region. Find the mixture that will be the most cost effective if P costs R5 per kg and Q costs R3 per kg. [13]

QUESTION 2

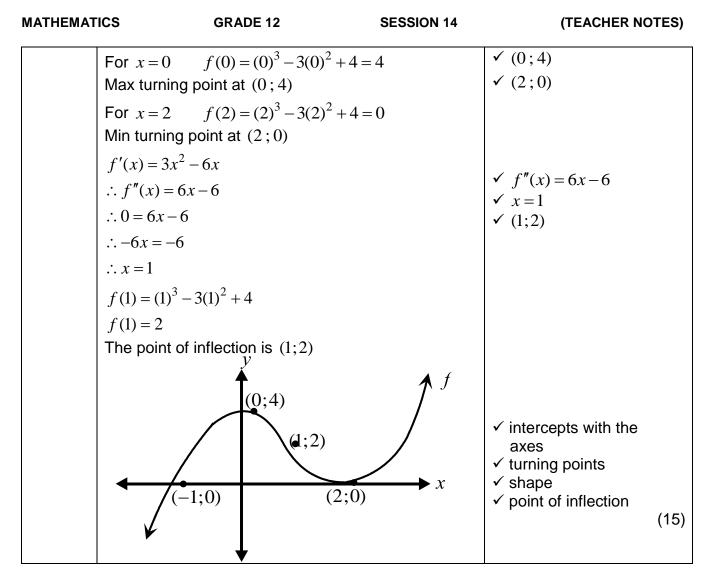
In order to paint the walls of his home, Joseph will require at least 10 litres of purple paint. Purple paint is obtained by mixing quantities of red and blue paint. To obtain a suitable shade of purple paint, the volume of blue paint used must be at least half the volume of red paint used. The hardware store where Joseph intends buying the paint, has only 8 litres of blue paint in stock. Let the number of litres of red paint be x and the number of litres of blue paint be y.

- 2.1 Write down the inequalities in terms of *x* and *y* which represent the constraints of this situation.
- 2.2 On the attached diagram provided, represent the constraints graphically and clearly indicate the feasible region.
- 2.3 The cost of both red and blue paint is R40 per litre, but the paint is only sold in 2-litre tins. Determine the number of litres of red and blue paint which can be bought maintaining a minimum cost. Show all possible combinations.

(5) [12]

(3)

(4)


SECTION D: SOLUTIONS TO HOMEWORK

4. TOPIC 1 : CALCULUS – GRAPHICAL APPLICATIONS

x-intercepts:	y-intercept: 4	$\checkmark 0 = x^3 - 3x^2 + 4$
$0 = x^3 - 3x^2 + 4$		✓ $(x+1)(x^2-4x+4) = 0$
$\therefore (x+1)(x^2-4)$	(x+4) = 0	$\checkmark x = -1$ or $x = 2$
$\therefore (x+1)(x-2)$	(x-2) = 0	
$\therefore x = -1$ or x	= 2	
$f'(x) = 3x^2 - 6$	x	$\checkmark f'(x) = 3x^2 - 6x$
$\therefore 0 = 3x^2 - 6x$		$\checkmark 0 = 3x^2 - 6x$
$\therefore 0 = x^2 - 2x$		$\checkmark x = 0$ or $x = 2$
$\therefore 0 = x(x-2)$		
$\therefore x = 0$ or $x =$	= 2	

SENIOR SECONDARY INTERVENTION PROGRAMME

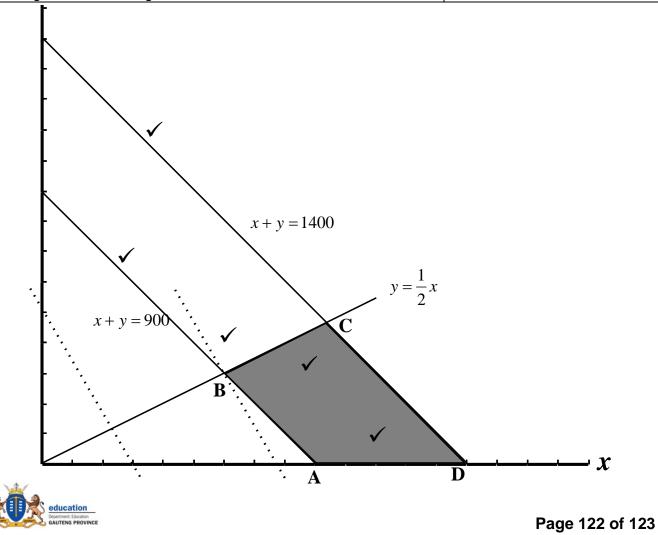
2.1	$h'(x) = -3x^2 + 2ax + b$	$\checkmark h'(x) = -3x^2 + 2ax + b$
	$h'(-1) = -3(-1)^2 + 2a(-1) + b$	✓ $h'(-1) = -3(-1)^2 + 2a(-1) + b$
	0 = -3 - 2a + b	✓ $2a-b=-3$ ✓ $h'(2) = -3(2)^2 + 2a(2) + b$
	2a - b = -3 (i)	✓ $n(2) = -3(2) + 2a(2) + b$ ✓ $4a + b = 12$
	$h'(2) = -3(2)^2 + 2a(2) + b$	$\checkmark a = \frac{3}{2}$
	0 = -12 + 4a + b	$\checkmark b=6$
	4a + b = 12 (ii)	(7)

SENIOR SECONDARY INTERVENTION PROGRAMME

MATHEMATICS		GRADE 12	SESSION 14	(TEACHER NO	TES)
	6a = 9 $\therefore a = \frac{3}{2}$ $\therefore 2\left(\frac{3}{2}\right) - b = b$ b = 6	(i) + (ii) -3			
2.2	Average grad $=\frac{10 - (-3,5)}{2 - (-1)}$ $=\frac{13,5}{3}$ $=\frac{9}{2}$	ient		✓ $\frac{10 - (-3, 5)}{2 - (-1)}$ ✓ $\frac{9}{2}$	(2)
2.3	$h(x) = -x^{3} + \frac{1}{2}$ $h(x) = -3x$ $h'(-2) = -3(-1)$ $h'(-2) = -12$ Point of containing $y - 2 = -12(x)$ $y = -12x - 22$	$2^{2} + 3x + 6$ $2^{2} + 3(-2) + 6$ act (-2; 2) x + 2		✓ $h(x) = -x^3 + \frac{3}{2}x^2 + 6x$ ✓ $h'(x) = -3x^2 + 3x + 6$ ✓ $h'(-2) = -12$ ✓ $y = -12x - 22$ ✓ $h'(-2) = -12$	(5)
2.4	$h'(x) = -3x^{2} - 6x^{2} - 6x + 6x + 3 = 0$ $x = \frac{1}{2}$	+3x+6		$\checkmark h''(x) = -6x + 3$ $\checkmark -6x + 3 = 0$ $\checkmark x = \frac{1}{2}$	(3)
					[17]

GAUTENG DEPARTMENT (OF EDUCATION
----------------------	--------------

SENIOR SECONDARY INTERVENTION PROGRAMME

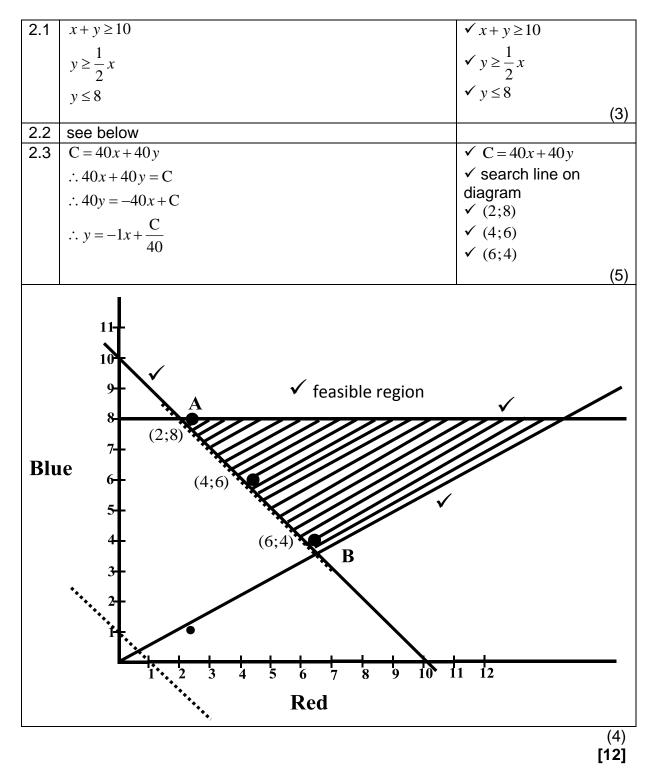

MATHEMATICS GRADE 12

SESSION 14

(TEACHER NOTES)

TOPIC 2 : LINEAR PROGRAMMING

Let $x =$ chemical P and $y =$ chemical Q	✓ $x + y \ge 900$
$x + y \ge 900$	✓ $x + y \le 1400$
$x + y \le 1400$	$\checkmark x \ge 2y$
$x \ge 2y$	1
$\therefore -2y \ge -x$	✓ $y \le \frac{1}{2}x$
	✓ $C = 5x + 3y$
$\therefore y \leq \frac{1}{2}x$	$\checkmark y = -\frac{5}{3}x + \frac{C}{3}$
The objective function is $C = 5x + 3y$	$y = -\frac{1}{3}x + \frac{1}{3}$
$\therefore 5x + 3y = C$	✓ 600kg of P
$\therefore 3y = -5x + C$	✓ 300kg of Q
	See graph for other marks
$\therefore y = -\frac{5}{3}x + \frac{C}{3}$	See graph for other marks
Cut on y-axis is 5 Cut on x-axis is 3	[13]
The most cost effective mixture is the point at which the cost	[]
is a minimum. The minimum cost is at point $B(600; 300)$.	
Therefore, the most cost effective mixture is:	
600kg of P and 300kg of Q.	


MATHEMATICS

GRADE 12

SESSION 14

(TEACHER NOTES)

QUESTION 2

Page 123 of 123